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Risks of synchronized low yields are
underestimated in climate and crop
model projections

Kai Kornhuber 1,2,3 , Corey Lesk1,4, Carl F. Schleussner 2,5,
Jonas Jägermeyr6,7,8, Peter Pfleiderer2,5 & Radley M. Horton 1

Simultaneous harvest failures across major crop-producing regions are a
threat to global food security. Concurrent weather extremes driven by a
strongly meandering jet stream could trigger such events, but so far this has
not been quantified. Specifically, the ability of state-of-the art crop and climate
models to adequately reproduce such high impact events is a crucial com-
ponent for estimating risks to global food security. Here we find an increased
likelihood of concurrent low yields during summers featuringmeandering jets
in observations and models. While climate models accurately simulate atmo-
spheric patterns, associated surfaceweather anomalies andnegative effects on
crop responses aremostly underestimated in bias-adjusted simulations. Given
the identified model biases, future assessments of regional and concurrent
crop losses from meandering jet states remain highly uncertain. Our results
suggest that model-blind spots for such high-impact but deeply-uncertain
hazards have to be anticipated and accounted for in meaningful climate risk
assessments.

Extreme weather events like heatwaves, droughts and extreme pre-
cipitation can adversely impact crop production1 and food security2,3.
Global warming is increasing the frequency and intensity4–7 of weather
extremes and the likelihood of their simultaneous occurrence
globally8–10. Extremes occurring in close temporal vicinity11–13 can lead to
outsized societal impacts, often beyond the sum of each extreme
occurring in isolation14. In particular, synchronized crop failures due to
simultaneous weather extremes across multiple breadbasket regions
pose a risk to global food security and food system supply chains15,16,
with potential disproportional impacts for import-dependent regions2,3.

Risks of synchronized breadbasket failures have been assessed on
a purely statistical basis17,18 and in relation to dominant modes of
climate variability16 that act on annual and seasonal timescales. In
the mid-latitudes, however, concurrent weather extremes are to a

large degree driven by the jet stream, the fast flowing winds in the
upper tropospheric mid-latitude circulation19–21. Specific summertime
circulation regimes in the jet stream act as circumglobal
teleconnections22–24, promoting simultaneous heat9,25 and rainfall20,26

extremes with adverse effects on agricultural production across the
mid-latitudes19. In Northern Hemisphere (NH) summer, recurrent pat-
terns have been identified as quasi-stationary Rossby waves with
wavenumbers 5 and 7 (wave-5 and wave-7 from hereon), where the
wavenumber refers to the number of ridges and troughs observed
within the mid-latitudes, whenever their amplitude is high. Such high
amplitude waves have been observed during major NH summer
weather extremes recently25,27,28.

While earlier analyses have shown the importance of atmospheric
wave patterns for local29 or coinciding19,30 extreme weather events,
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their impact on yield anomalies has to date only been quantified on a
regional basis. The effect of such wave patterns on yield co-variability
between pairs of regions remains unquantified in observations as well
as in model experiments. Purely model based risk assessments require
both crop models that show skill in reproducing observed extreme
weather yield responses with sufficient accuracy and climate models
that reproduce observed relationships between wave patterns and
extreme weather. A recent analysis by Luo et al.31 shows that the sur-
face imprint of wave patterns is largely underestimated in three cli-
mate models, while their phase position is reasonably well depicted.
Recent CMIP6models and bias-adjustedmodel experiments, however,
have not been investigated. Thus, models on which recent risk
assessments rely still lack a thorough review. Further, the performance
of climate-crop models in simulating historical wave pattern-induced
concurrent low yields across regions remains unassessed. In addition,
potential future changes in wave patterns and associated surface
anomalies and yield co-variability impacts have not been quanti-
fied so far.

Here, we map the observed concurrence patterns of low yields in
major breadbasket regions associated with wave-5 and wave-7 patterns
and probe the skill of models to reproduce the observed relationships.
To do so, we use the most recent experiments from the Global Gridded
Crop Model Intercomparison (GGCMI32) over five key crop regions that
account for a large part of global maize and wheat production (maize:
~66%; wheat: ~70%33), and compare results based on historical model
experiments to observed crop data33. To evaluate if current climate and
crop models are suitable for credible multiple breadbasket risk assess-
ments, we provide results from cropmodels driven by observations and
crop models driven by bias-adjusted CMIP6 models (see data and
methods section fordetails) over thehistorical timeperiod (1960–2014).
In doing so we aim at answering the following questions:

Estimating biases in climate models: How well are upper tropo-
spheric jet patterns and associated surface weather anomalies repro-
duced in bias-adjusted CMIP6 simulations?

Regional impacts on crop yields in observation andmodels: Can a
cropmodel driven by reanalysis data and bias-adjusted CMIP6 climate
simulations reliably reproduce observed regional crop yield anomalies
related to specific wave patterns?

Cross-regional impacts in observations andmodels: How dowave
events modulate the concurrence of low yields in major crop produ-
cing regions, and how do results from the crop model driven by rea-
nalysis and climate models compare to the observed signals of low
yield concurrence?

The Results section is organized around answering these three
categories of questions, primarily by analyzing observations and his-
torical climate and crop simulations. However, our methodology also
allows us to briefly offer projections towards the end of each of the
three Results subsections, informed and in some cases tempered by
important caveats identified in the comparison of historical simula-
tions to observations.

Results
Circulation patterns and associated surface anomalies
While upper tropospheric wave patterns are well reproduced in the
bias-adjusted CMIP6multi-model mean, associatedmulti-model mean
temperature (Fig. 1) and precipitation anomalies (Fig. S3, Table S1) are
largely underestimated. To determine these composite maps wave
events and anomaly fields are calculated for each model separately
following the methodology of Kornhuber et al.19 (see methods: wave
events) before averaging.

Toquantifymodel agreementwith reanalysis-data,we calculate the
Pearson correlation r and coefficient of determination R2 of model-
based compositefields (Fig.1 b, c, f, g)with thosebasedon ERA-5 (Fig.1a,
b) over the mid-latitudinal belt (38°−58°N). Note that R2 is calculated
between the values of the two respective fields and not between values
and a fit as is usually done. We find high values for meridional winds
(corw7

v,hist =0:89,R
2 =0:89; corw7

v,ssp585 =0:92,R
2 =0:92; corw5

v,hist = 0.82,
R2 =0:76; corw5

v,ssp585 = 0.84, R2 =0:8), but low values for temperature
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Fig. 1 | Circumglobal wave-7 and 5 patterns and associated 2m air temperature
anomalies in ERA-5 reanalysis data and bias-adjusted CMIP6 models. Mer-
idional winds in m/s (contours; purple: southerly, orange: northerly winds, in
(a–c, e–g) contours start at an absolute value of 3m/s and increase/decrease by 3
respectively, in (d, h) contours start an absolute value of 0.5 and increase/decrease
by steps of one) and near surface temperature anomalies filled contours during
(a–c) wave-7 and (e–g) wave- 5 events relative to the respective climatology in the
northern hemisphere summer (JJA) based on (a, e) ERA5 reanalysis (1960–2014),
(b, f) historical (1960–2014) and (c, g) future (SSP5-8.5, 2045–2099) bias-adjusted

output fromCMIP6 simulations (fourmodels).d, h) Difference inmeridional winds
and temperature response during wave events comparing historical and future
patterns in four bias-adjusted CMIP6 models (for twelve non adjusted models see
Fig. S6). Hatching shows statistical significance on a 95% confidence level (a,d, e,h)
or 100% model agreement in sign (4 out of 4 models, b, c, f, g) While the phase
positions and intensity of the wave patterns (line contour) are well represented in
the models their surface imprint are considerably underestimated in historical
simulations. Changes in the temperature response are identified over North
America, Eurasia and East Asia (d, h).
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anomalies in the multi-model mean (corw7
t2m,hist =0:35,R

2 =0:14;
corw7

t2m,ssp585 =0:38,R
2 =0:15; corw5

t2m,hist =0.03, R
2 =0:02; corw5

t2m,ssp585 =
0:51,R2 =0:28) and even lower values for precipitation anomalies
(Table S1, Fig. S3). Luo et al.31 found similar results for three models
partly basedonCMIP5 experiments, suggesting thatmodelsmight have
not considerably improved in the newer CMIP6 experiments. Notably,
bias-adjusted model outputs do not exhibit considerably improved
spatial correlation values and anomaly fields compared to the original
CMIP6 simulations (Table S2, Figs. S4, S5), possibly because bias
adjustment optimizes fields for different subsamples rather than high
amplitude wave events.

Circulation related changes in temperature during wave events
comparing historical and future experiments for four bias-adjusted
models are shown in Fig. 1, d, h. Future extreme warming simulations
do not project an increase in mean wave amplitudes (Fig. S1), which
have a tendency to be underestimated in historical experiments
(Fig. 1). This is in line with no detectable trend in wave events over the
historical time-period (Fig. S9).

However, ridges over certain regions do amplify in the future
projections and contribute to larger positive temperature anomalies in
the four bias-adjusted models (Fig. 1d, h, see Fig. S6 for anomalies
based on all CMIP6 models). For wave-7, temperature anomalies
increase significantly over Western North America (NA) and over East
Asia (EAS), while for wave-5 significant increases are detected for
Western NA and most of Eurasia. The correlations with observed
temperature anomalies are higher for future compared to historical
simulations in part due to increased temperature anomalies beyond
mean warming alone.

Concerning crop producing regions, the majority of the climate
models analyzed here underestimate temperature and precipitation

anomalies during wave events (Fig. 2). Underestimation of surface
anomalies in models during wave events may translate into particular
underestimated risk to crop productivity in key breadbasket regions.
To assess this, we calculate the spatially averaged surface response
in temperature and precipitation in important NH mid-latitude
crop regions (Fig. 2a, see methods) during wave-7 and wave-5 events
(Fig. 2b–k). We compare two different reanalysis datasets (ERA5,
1960–2014; W5E5, 1979–2014) to the bias-adjusted output from four
CMIP6 models and their multi-model mean under historic and future
simulations.

Strongest discrepancies between surface anomalies in reanalysis
andmodels are foundwhere the crop-producing regions spatially align
with a wave-induced temperature anomaly, such as WEU for wave-7
andNA,WEU, andEEU forwave-5. For reanalysis,wefind thatNA shows
above average temperatures during wave-5 events, and dry anomalies
during wave-7 events. Strongest bivariate differences between wave
patterns occur over western European (WEU) croplands which are
wetter and colder during wave-5 events and hotter and drier during
wave-7 events. Eastern Europe (EEU) exhibits warmer than average
temperatures during wave-5 events and wetter than average condi-
tions during wave-7 events. India (IND) and Eastern Asia (EAS) are drier
than average duringwave-7. Here, the reanalysis products covering the
recent years (W5E5, both 1979-2014) exhibit wetter and drier condi-
tions respectively, whereas ERA5 shows precipitation anomalies of
opposite sign to the other reanalyses. The bias-adjustedmodel output
does not exhibit a notable improvement relative to the other
CMIP6 models over the historical period (Fig. 2, Fig. S7). Projected
relative anomalies however do move towards the observed values in
some regions, e.g. temperature anomalies for wave-5 in EEU and pre-
cipitation in IND for both waves (Fig. 2, Fig. S5), which aligns with the

Fig. 2 | Mean response in precipitation and 2m temperature anomalies over
major crop-producing regions during wave events in reanalysis data and
CMIP6 climate models. a Major crop producing regions in the Northern Hemi-
sphere mid-latitudes defined by a threshold of 25% harvested area per grid-point.
Weekly mean temperature and aggregated precipitation anomalies averaged over
the regions outlined in (a) for (b–f) wave-7 and (g–k) for wave-5. We compare two
different reanalysis datasets ERA-5 (dark red,1960–2014) and W5E5 (red,

1979–2014) with bias-adjusted output from four CMIP6 models under historical
(green, 1960–2014) and future (2045–2099, SSP5-8.5, yellow) conditions, whereas
their mean values are shown as dashed lines. Note the different y-axis range for (k)
and (f) compared to the other panels. Temperature anomalies are dominantly
underestimated in the bias-adjusted output in WEU (wave-7, wave-5), EEU and NA
(wave-5). Precipitation anomalies are underestimated in NA, WEU (wave-7).
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increased pattern correlation of future temperature anomaly fields
identified earlier (Table S1).

Observed and simulated regional yield losses
The occurrence of multiple wave events in summer negatively affects
combined maize and wheat yield at the regional and global level in
observational yield statistics (FAOSTAT33), but these impacts are not
accurately reproduced by the crop-model experiments in most
regions, especially when driven by bias-adjusted climate models
(Fig. 3). We show this by comparing estimates of the waves’ composite
impact on combined wheat and maize yield in observations (ERA5 x
FAO-data: Obs/Obs), a crop model driven by a reanalysis product
(W5E5 x LPJmL: Obs./Model) and the mean crop-model response from
four climate models (bias-adjusted CMIP6 x LPJmL; Model/Model)
under historical (Fig. 3a, c) and future conditions (Fig. 3b, d, see
methods for further details).

We find that years with more than one wave event are associated
with regional crop yield anomalies of up to −7% in EAS for,−6% to inNA
and−3% inEEU forwave-7with an average response across the selected
regions of −2% to −3%. For wave-5 we observe values of −1% to −3% for
respectively with highest regional anomalies observed in EEU (−3.7%)
and NA (−2%) (Fig. 3a, c Obs/Obs). These results are in agreement
with Kornhuber et al. 202019, whose analysis relied on NCEP.NCAR
reanalysis over a shorter period (1979–2018) and different crop data.
Averaged across all regions, the response for wave-7 in CMIP6-driven
experiments is essentially zero, which represents an underestimation
of 3% globally relative to observations. While the yield anomalies
averaged across all regions are in good agreement for wave-5, regional
anomalies in models deviate from observed values: a 3% over-
estimation in NA compensates for the underestimation in all other

regions. Historic crop simulations underestimate the response in EAS
by 9% and by 3% in EEU (Fig. 3c).

In some regions, disagreements between purely observation and
model-based assessments are substantially reduced when the crop
model is driven with bias-adjusted ERA5 reanalysis data (W5E5, Fig. 1a
Obs/Model). While disagreements with observed values remain over
EAS and WEU, yield anomalies in NA, EEU and IND are found to be
well within the error-margins of the observed impact. This provides
evidence that surface anomaly biases in CMIP6 models are to a large
degree responsible for ensuing crop model disagreement with obser-
vations in some regions. However, we note that this reduction in dis-
agreement for the reanalysis-model hybrid is not consistent for all
regions, suggesting regional variation in the accuracy of the crop
model response to wave events.

Although linked climate and crop model simulations tend to
underestimate observed crop impacts, a comparison of historical and
projected future impacts might be still instructive given the large
societal risks associated with even a small percentage change in yield.
Future impacts on crop yield increase for wave-7 globally (Fig. 3b, d),
and averaged over all regions, driven mainly by increased negative
impacts in NA where yield is reduced by 6% compared to historical
simulations, in agreement with the projected amplified heat response
in that region in bias-adjusted model experiments (Fig. 1d, Fig. 2b).
Meanwhile, wave-5 projected impacts dampen at aggregated geo-
graphic scales, primarily driven by much-reduced impact over NA that
is only slightly offset by an increased impact over EEU. This increase
over EEU is in agreement with the amplified temperature response
observed in themulti-modelmean for that region (Figs. 1h, 2i).Wenote
that since the temperature and yield anomalies are normalized to
respective time periods, these comparisons isolate the influence of
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Fig. 3 | CombinedWheat andMaize yield anomalies during wave event years in
observations andmodels.Composite yield anomalies based on wave events from
ERA-5 reanalysis and annual reported national yield statistics from FAO (Obs/Obs),
wave events from ERA-5 reanalysis and yield anomalies from a crop model (LPJmL)
driven by reanalysis data (W5E5, Obs/Model) and crop model (LPJmL) driven by
four bias-adjusted CMIP6 simulations (Model/Model) for (a) wave-7 and (c) wave-5
over the historical time period (1960–2014). Composites compare years in which
two or more wave events are detected in JJA (red to purple bars) with the control
case of years without such events (gray, light yellow bars). Bars andwhiskers depict

the distribution of 500 resampled replicate composite yield effects, where each
replicated preserves the sample size of the underlying observations (wave events).
Differences in detected wave events across datasets cause the difference in dis-
tribution variance. Differences in modelled crop impacts (both Obs/Model and
Model/Model) are large compared to observations, but are smaller in some regions
when driving the crop model with bias-adjusted reanalysis weather data (Obs/
Model) instead of GCM simulations (Model/Model). (b, d) as in (a, b) but showing
crop yield anomalies simulated by LPJmL based on historical (1960–2014) and
future (SSP5-8.5, 2045–2099) simulations.
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wave patterns relative to contemporaneous climate, masking large
mean warming and yield changes32 along with their own attendant
uncertainties. Given the large biases in regional crop response to wave
events, these results have to be considered with caution.

When quantifying the crop response to extreme weather events,
their timing relative to the sowing and harvesting calendars is
crucial34,35. For instance, the lack of wave event impact for wave events
on WEU crop yield in observations might be related to dominance of
winter wheat in this region, with a growing season extending far out-
side of JJA. Furthermore, we find that the timing of wave events within
JJA differs between observations and CMIP6 (Fig. S8) presenting an
additional potential explanation (beyond surface anomalies) for yield
discrepancies between observations and CMIP6 models. While wave-5
events are evenly distributed over the summer season with a slight
preference for the later weeks in ERA-5, these events skew towards the
beginning of the season in the models, a tendency that is reinforced
under a high emission scenario (Fig. S8). While wave-7 events pre-
dominantly occur in June and early July in ERA-5, CMIP6 models sug-
gest a more evenly distributed occurrence of wave-7 events that reach
into August.

Observed and simulated concurrent yield losses
The occurrence of one or more wave event in summer elevates the
likelihood of poor harvests in pairs of two important crop producing
regions in observations (Fig. 4a, e). To quantify the effect of wave
events on concurrent poor yields we introduce the likelihood multi-
plication factor (LMF) in analogue to e.g. Zscheischler & Seneviratne36

(see Eq. (3) in Methods). The LMF is larger than one for a pair of two
regions when wave events amplify the likelihood of concurrent low
yields and lower than one when wave events have a lessening effect.

Herewe define a poor yield year as a year inwhich the combinedwheat
andmaize yields are below themultiyear trend. In analoguewe test the
effect on concurrent yields above the long-term trends to test a
potential beneficial effect on yield in two regions.

Results investigating concurrent negative anomalies are shown in
upper right tiles of heatmaps in Fig. 4, while results on concurrent
positive anomalies are presented in lower left tiles. In experiments
based on observations (Obs./Obs., Fig. 4a, e) wave events increase the
likelihood of concurrent negative yield anomalies in particular in
pairings that include NA while they mostly decrease the likelihood of
concurrent positive yield years overall. Both aspects are well repre-
sented in experiments based on LPJmL driven by reanalysis data
(Fig. 4b, f), however values are higher for parings that include NA and
EAS for wave-7. Further discrepancies between observation-based and
modelled yields are found for pairings with WEU and EAS exhibiting
overestimated LMF values for wave-7, while being mostly under-
estimated for wave-5. We find that LMF values for concurrent low
yields and high yields differ statistically significant for both experi-
ments (Obs./Obs., Obs./Model) and both waves throughout regions
(Figs. S12–S15). Historical CMIP-6 models (Fig. 4c, g) exhibit a good
agreement with observations, in particular for wave-5 where three out
of four models agree in sign for most of the regions that have been
identified as teleconnected. For wave-7 model agreement is strongest
for the link between for NA x EEU, while the co-occurrence of positive
yield anomalies is overestimated in some regions. This tendency
increases for wave-7 in future projections, where concurrent positive
yields dominate (Fig. 4d). The only pairings that see an increase in
multi-model mean LMF for co-occurring negative yield anomalies are
NA x EAS for wave-7 and NA x EEU and IND xWEU for wave-5. Notably,
for future projections the four models exhibit poor agreement with
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Fig. 4 | Likelihood multiplication factors (LMF) of concurrent yield losses in
observations and models. LMF of concurrent negative yield anomalies of com-
binedwheat andmaize yield in two regions forwave-7 (a–d) andwave-5 events pear
year (e–h) (upper right corner). LMF for concurrent positive yield anomalies are
provided in the lower left corner of each heatmap. a, e Values based on ERA-5 and
FAO data (1960–2014, Obs./Obs.).b, f Values based onwave events from ERA-5 and
yield anomalies from LPJmL driven by W5E5 (Obs/Model.). LMF values for

concurrent low and high yields differ significantly for (a, b, e, f) (Figs. S12–S15).
Averaged LMF values based on LPJmL driven by four bias-adjusted CMIP6 models
separately are shown for (c, g) historical experiments (1960–2014) and (d,h) future
projections (2045–2099, SSP5-8.5). Model agreement is provided by dots where
one dot indicates an agreement (above or below a LMF value of one) among three
out of four models while two dots indicate an agreement among all four models.
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respect to changes in low yield concurrence (compare Figs. S10, S11).
While for wave-5 LMF values increase for MPI-ESM1-2-HR, values
decrease in all regions besides NA for UKESM1-0-LL. Such disagree-
ment in simulated concurrent yield loss across varying climate model
inputs complicates drawing clear conclusions on on how LMF values
will change in the future.

Discussion
Concurrent crop failures in major crop-producing regions constitute a
systemic risk as associated spikes in food prices can lead to conflict
and undernutrition in countries that rely on imports1,3. Thus, under-
standing the likelihood of concurrent crop failures and the degree to
which models are able to reproduce observed relationships is impor-
tant for increasing the resilience of the global food system15 and miti-
gating climate risks.

While circulation patterns associated with high amplitude Rossby
waves are accurately reproduced in climate models (Fig.1, Table S1),
the magnitude of surface temperature and precipitation anomalies is
largely underestimated, including in important crop producing
regions (Figs. 1, 2). Similar results have been reported for other climate
models mostly following the CMIP5 protocol31, however it is notable,
that bias-adjusted output from CMIP6 experiments do not exhibit
considerably improved spatial correlation and an accurate magnitude
in surface anomaly fields (Fig. 1, Tables S1, S2), possibly because bias
adjustment optimizes fields for different subsamples rather than high
amplitude wave events.

Investigating future projections under a high emission scenario,
we find no consistent global increase in wave amplitudes in models
(Figs. S1, S2). This might be due to the fact that our wave diagnostic
is applied to the mid-latitudes (37.5–57.5°N) and is therefore not
sensitive to suggested37 changes in sinuosity in higher latitudes where
the increased temperature gradient from increased land warming
increases zonal winds and improves waveguidability37,38. Instead, lower
wave amplitudes might be a consequence of the projected weakening
of summertime stormtracks, associated with an increase in weather
persistence39,40 in the mid-latitudes39,41, which might lower the magni-
tude of meridional winds on which the wave diagnostic is based on
(see methods). We identify a regional amplification of troughs and
ridges, in particular over the NA West coast and Eurasia (Fig. 1d, h,
Fig. 2b, i, f) for wave-7 and wave-5 respectively. Amplified land-
atmosphere feedbacks which are acting on top of regional circulation
changes in a warmer climate42–44 are other potential factors for
an increased regional temperature response. With the impacts of
recent extreme heat events45,46 and associatedwildfires47,48, such as the
severe Pacific northwestern heatwave of 202145 and the extraordinary
Siberian heatwave of 202049, these regions potentially emerge as high
risk areas.

We find that simultaneous extremes linked to a meandering jet
stream from amplified Rossby waves19 lead to regional yield losses
(Fig. 3) and to concurrent lowharvests across themid-latitudes (Fig. 4).
This increased likelihood of concurrent low yields in major breadbas-
kets, is mostly reproduced by historical model experiments, whether
driven by reanalysis data or climate models in particular for wave-5
(Fig. 4). Regionally, however, we find that yield losses are mostly
underestimated in crop models driven by climate model output
(Fig. 3), while crop models driven by reanalysis data show more
accurate responses.

The mostly adequate model representation of concurrent low
yields combined with predominant underestimation of local impacts
on yields, parallels the reasonable representation of modeled wave
patterns and an underestimation of associated surface anomalies in
bias-adjusted model output.

The biases in modelled crop yield response to wave event draw
the reliability of future projections into question, but the societal
importance of yield projections and the absence of a better approach

argue for discussion under consideration of identified caveats.
Increased local impacts on yields are identified in regions where future
surface anomalies are projected to increase (e.g. NA for wave-7 and
EAS for wave-5 (Fig. 2b, I, Fig. 3). However, the projected concurrence
of poor yields, is found to be less conclusive (Fig. 4d, h), as models
show divergent responses to future warming scenarios (Figs. S15, S16).

With positive trends observed in magnitude and frequency of
extreme weather events, in particular for extreme heat, concurrent
weather extremes causing interconnected and potentially disruptive
impacts have become more common and will increase further if
greenhouse gas emissions remain unmitigated8,9,50. Informed adapta-
tion measures depend onmodels that simulate not just mean changes
but also the changes in complex lowprobability but high-risk scenarios
such as the concurrent and persistent extreme heat and rainfall
extremes as observed e.g. in the extreme summers of 201825,51 in Eur-
ope and Russia in 201028,52, both with severe agricultural impacts53,54.

Assessing these complex risks depends upon an adequate repre-
sentation of the location, magnitude, frequency and sub-seasonal
distribution of extreme weather events, which may change under
future emission scenarios. Our results highlight how the evolution
of risks of multiple breadbasket failures under climate change are
characterized by deep uncertainty in part due to the insufficient
representation of the underlying climate impact drivers in models55.
Other major observational and modelling uncertainties regarding cli-
mate change risks to global crop production include themagnitude of
the CO2 fertilization effect and general changes in the hydrologic
cycle. Our results point to an additional modelling uncertainty with
import specifically for inter-regional crop yield covariability, which
have unique consequences for the global food system. Future work
should examine potential interactions among these key uncertainties,
particularly the potential modulation of jet-related hazards by mean
hydrologic and thermodynamic change.

While climate models have been excellent in projecting the mean
response to continued anthropogenic greenhouse gas emissions56, our
analysis suggests that they might provide a conservative estimate of
how concurrent extreme weather events driven by specific circulation
regimes might evolve in future and how they might affect regional
crop yield and covariability across regions. Further we highlight that
the underestimation of surface extremes identified in CMIP5 models31

and impacts on yields from their bias-adjusted output still persist in
most recent climate and crop simulations. Physically constrained
machine learning methods designed to maintain patterns and coher-
ence across variablesmight offer an effective tool for an improved bias
adjustment for more accurate impact assessments57.

Our study points towards potential high-impact blind spots in
current climate risk assessments, highlighting the urgent need for
more empirical and process-based research to support model
improvements in the climate and agriculture domains, supple-
mented by expert elicitation, qualitative storylines58, and decision-
centric approaches59. Evidence for high-risk blind spots such as an
underestimation of synchronized harvest failures as identified here,
manifests the urgency of rapid emission reductions, lest climate
extremes and their complex interactions might increasingly become
unmanageable.

Methods
Data
ERA560 reanalysis data for years (1960–2014) data using the recently
published back-extension was downloaded from the Copernicus Data
Store (https://cds.climate.copernicus.eu/#!/home). Daily mean fields
of 2m temperature, precipitation and meridional winds are based on
hourly data at timesteps 0:00, 6:00, 12:00 and 18:00. Downloaded at a
0.25 × 0.25 resolution, the data was re-gridded to 1 × 1 resolution.
Temperature and precipitation data was detrended by subtracting
linear trends on a grid-point basis over the investigated period and a
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subsequent subtraction of the day-in-year climatological value over
the same period in order to remove the seasonal cycle. For tempera-
ture and meridional winds weekly anomalies are calculated by aver-
aging daily mean data centered around the day for which a high
amplitude is detected. For precipitation, weekly anomalies are calcu-
lated by a 7-day aggregation of daily anomalies centered around the
day for which an event is detected. Meridional winds are analyzed a
250mb level.

W5E561 is the primary input data for the ISIMIP3-project, is based
on bias-adjusted ERA5 data for the period 1979-2014 and GSWP3
homogenized to W5E5 for years 1960-1978 and was acquired from the
internal repository of the Potsdam Institute for Climate Impact
research. For a more detailed description about the bias adjustment
process see62 and https://www.isimip.org/gettingstarted/input-data-
bias-correction/details/80/. Wave events for Fig. 2 and Figs. S4, S5 are
based on ERA5 wind-fields. As years prior to 1979 are not based on
ERA5 we limit the analysis to years 1979–2014.

CMIP663 daily 2-meter temperature, precipitation and meridional
wind fields were retrieved from the google data store and re-gridded to
1 × 1° resolution for years 1960–2014 (historical runs) and 2045-2099
(SSP5-8.5). Temperature and precipitation fields were detrended fol-
lowing the approach described above. Precipitation fields from CMIP6
were converted from precipitation flux (kg m−2 s−1) to meter per unit
cell per hour by multiplying each value with a factor of 3.6. Models
included in this analysis were chosen based on the availability of
meridional wind fields on daily time-scale for both time-periods
investigated. The following twelve models were included: BCC-CSM2-
MR, CESM2-WACCM, CNRM-CM6-1, CNRM-ESM21, CanESM5, EC-
Earth3-Veg, GFDL-CM4, IPSL-CM6A-LR,MIROC6,MPI-ESM1-2-HR,MRI-
ESM2-0, UKESM1-0-LL.

Bias-adjusted models and yield-data
We identify maize and wheat responses to amplified wave patterns
based on a 3-tier protocol: (i) FAO33 crop yield statistics comparedwith
reanalysis weather data, (ii) crop model-based yield estimates driven
by reanalysis weather data, (iii) crop model-based yield estimates
based on 4 downscaled and bias-adjusted CMIP6 climate models. Our
analyses leverage cropmodel simulations facilitated byAgMIP’s Global
Gridded Crop Model Intercomparison (GGCMI)32. Here we use global
LPJmL simulations at 0.5° for maize and wheat driven by W5E561 rea-
nalysis data (1960-2014) and climate model simulations from 4
CMIP6 GCMs (2045-2099), bias-adjusted and downscaled by ISIMIP64

(IPSL-CM6A-LR, MPI-ESM1-2-HR, MRI-ESM2-0, UKESM1-0-LL) to esti-
mate the effect of high amplitude waves on crop yield anomalies. For
more details on the crop modelling protocol, see Jägermeyr et al.32.

Crop producing regions and regional aggregation: Crop-
producing regions in the northern hemisphere mid-latitudes are
defined similar to prior studies: North America (United States,
Canada),Western Europe (France, Switzerland, Spain, Portugal, United
Kingdom, Belgium, Netherlands, Germany), Eastern Europe (Greece,
Bulgaria, Moldova, North Macedonia, Ukraine, Romania, Serbia, Alba-
nia, Russia), India and Eastern Asia (China, Mongolia). Grid-points
relevant for crop production for the analysis shown in Fig. 2 are
defined by a grid-point based threshold of 25 % harvested area
fraction based on 2005 fields from Ray et al.65. We further include an
‘all regions’ grouping including all wave event-affected countries, as
well as global total yield levels as a ‘world region’ which refers to the
global yield level in a given year. We aggregate crop yield data to the
regional scale by summing national FAO production and divide it by
total harvested area in each year, and summing griddedmodeled crop
production data, which are based on static harvested area over time.
Because the crop model cannot simulate annual variations in har-
vested area, we strictly compare simulated yield (i.e., productivity)
with observational yield levels from FAO. We then simply detrend
modeled and observed crop yields using singular spectrum analysis

(SSA), a non-parametric method that avoids assumptions about the
functional form of the climate and yield trends66. This isolates inter-
annual yield variability from longer-term trends, and thus quantifies
yield variations relative to ~10-year moving windows. Thus, the com-
posites reflect yield variations relative to contemporaneous yields,
enabling us to composite wave event impacts relative larger long-term
mean changes in yield.

Wave analysis and wave event definition
We analyze wave patterns following the approach from Kornhuber
et al.19, decomposing weekly averages of the weighted mean of mid-
latitude (37.5°N–57.5°N), meridional wind fields (250mb) with a fast
Fourier decomposition in June-August (JJA). The 92 days in the JJA yield
13 weeks. The weekly averaging assures some degree of anti-aliasing,
and serves as a low-pass filter. High amplitude wave events are
detected when the weekly amplitude exceeds a value of 1.5 standard
deviation above the mean relative to the respective wave’s JJA clima-
tology. As events are based on a threshold that varies with the
respective climatology,wefind similar event numbers for eachdataset.
For ERA5 that is 54 wave-7 events and 62 wave-5 for JJA 1960–2014
(see Fig. S9 for number of events per year for each wave).

Composite analysis
For each tier in the protocol described above, we use a compositing
method similar to Kornhuber et al.19 to estimate the regional compo-
site yield anomalies for both years with >1 wave event, and years with
no wave events (the ‘control’). The method isolates the signal of spe-
cific events in noisy time series by averaging anomalies across the
sample of either >1 or 0 wave event years within each tier of the pro-
tocol (i.e., observedormodeled future/historical wave events). Prior to
averaging regional yield values for the sample of >1 or 0 event years,
the values are divided by the average yield values for the three years
preceding and following the event, generating standardized compo-
sites (in terms of % of regional production). To estimate uncertainty in
this point estimate of the standardized composite yield anomaly, we
re-estimate 500 replicates of the composites using ~90% of the full
sample. This bootstrap approach yields a distribution of resampled
composites, which we depict as box-and-whisker plots. Values men-
tioned in the results reflect median composite estimates across the
500 replicates. Further details on the compositing method can be
found in Kornhuber19.

Likelihood multiplication factor and definition of poor
yield years
The LMF for a specific wave and a pair of regions is determined by first
calculating the number of years that feature concurrent below average
yields y1 and y2 in those specific regions conditioned on the occur-
rence of more than one wave event of the specific wavenumber
N y1<0,y2<0_w>1ð Þ divided by the total number of years that feature more
than one wave event per year Nw>1:

pw>1 =N y1<0\y2<0_w>1ð Þ=Nw>1 ð1Þ

To determine the LMF we calculate the ratio of pw>1 and

p0 =N y1<0\y2<0_w=0ð Þ=Nw =0, ð2Þ

the ‘hit rate’ of concurrent low yields conditioned on the occurrence of
no wave event:

LMF=pw>1=p0: ð3Þ

Thus, LMF provides a factor by which the occurrence of wave
events increases the occurrence of concurrent low yields in two
regions, relative to years in which no events occur. In Fig. 4 we provide
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results on concurrent high yields in analogue to this approach. Poor or
good yields years are defined as those years in which a region exhibits
combined wheat and maize yields below or above the multiyear trend
respectively. This moderate threshold ensures a more reliable statistic
through a higher sample size. The following example is based on ERA-5
and FAO data and regions WEU and NA and wave 7: we find
N y1<0,y2<0_w>1ð Þ =6 years where yields are below the long-term trend in
both regions that also feature more than one wave event. Throughout
the dataset Nw>1 = 15 years are identified in whichmore than one wave
event occurs, thus: pw>1 =

6
15. Of those, only one event shows con-

current positive yield anomalies. In contrast, we find Nw=0 = 20 zero
event years of whichN y1<0\y2<0_w=0ð Þ = 5 feature concurrent low yields.
Thus p0=5/20. For wave-7 and NA x WEU we find:

LMF =
6
15

� 20
5

= 1:6:

During years with more than one wave-7 event the probability of
concurrent low yields is increased by a factor of 1.6 or 60% compared
to years with no wave-7 event (see Fig. 4a).

Data availability
Reanalysis and CMIP6 datasets used in this study are publicly available
at https://cds.climate.copernicus.eu/#!/home and https://esgf-node.
llnl.gov/search/cmip6/ respectively, the GGCMI datasets are available
at https://agmip.org/aggrid-ggcmi/.

Code availability
All scripts relevant for the presented analysis will be made available at
GitHub: https://github.com/KaiKornhuber/BreadBaskets_code.git.
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