ASSESSING THE TECHNICAL PROBLEMS OF BRICK PRODUCTION
A GUIDE FOR BRICKMAKERS AND FIELD-WORKERS

Introduction
These notes should help identify brickmakers’ technical problems. The problems need to be identified correctly for a solution to be found; not always easy when faced with a faulty brick or batch of bricks. So, the notes try to highlight the main problems, the reasons for them, and possible solutions. We'll consider the final product, the fired brick, and trace faults back to their cause 1. In reality small-scale brickmakers often face many problems, such as marketing, business management, record keeping, and fuel scarcity. Quality control is only one aspect of running a successful enterprise. In fact, the main problem is seldom technical. For example, it’s no good upgrading the output of a brickworks, causing extra work and expense, if customers aren’t prepared to pay more for improved quality. Nevertheless, it is worth knowing where problems originate and how they might be solved, particularly for brickworks suffering heavy losses or unable to meet the standard their market demands.

Field testing
Specific defects are illustrated in the tables. However, there are some simple tests which can be done in the field. Firstly, when you handle a brick, see if it's soft. Can you pick off the edges? Can you scratch the surface with your fingernail? If so, the brick is probably underfired - one of the most common problems. Now, break a brick in half. Was it easy? Is there a ‘core’ of different colour material? If the brick breaks easily or has a core like this, then it's underfired. What about the cross section? Are there lumps or stones, internal cracks or holes? If so, the soil probably wasn’t mixed well enough.

You can tell a lot about bricks by soaking them in cold water for 48 hours. If you weigh bricks before and after soaking, you can calculate the percentage of water they absorb. A good brick shouldn't absorb more than 15% of its dry mass. If bricks are too absorbent they suck moisture out of mortar and weaken the bond. You may find the brick dissolves altogether. In this case, it's definitely underfired - and dangerous to use in any building. The presence of lime may also be detected by soaking bricks. If lime is present as lumps, it may expand and cause fractures, exposing powdery white deposits.

1 See Brickmaking in Developing Countries (Parry, BRE, 1979) and Village-Level Brickmaking (Beamish & Donovan, Vieweg, 1989) for additional information.
BRICK PROBLEM

<table>
<thead>
<tr>
<th>SIZE</th>
<th>PROBABLE REASON</th>
<th>POSSIBLE SOLUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Too big in all dimensions (all types)</td>
<td>(i) Too many coarse particles in raw material
 (ii) Underfired
 (Either way, (i) or (ii), bricks are not shrinking as allowed for)
 (iii) Mould or extrusion die is too big - worn?</td>
<td>(i) Sieve out coarse material or crush soil before moulding
 (ii) Increase firing temperature &/or time (increase fuel?)
 (iii) Replace</td>
</tr>
<tr>
<td>(b) Too thin (sand moulded & slop moulded)</td>
<td>Squashed in handling - probably when laid to dry on edge</td>
<td>More care handling bricks & try moulding a little drier</td>
</tr>
<tr>
<td>(c) Too thick (extruded bricks)</td>
<td>Cutting wires set wrongly</td>
<td>Adjust settings</td>
</tr>
<tr>
<td>(d) Too small in all dimension (all types)</td>
<td>(i) Die or mould too small
 (ii) Too high clay content - excessive drying shrinkage
 (iii) Overburned - excessive firing shrinkage - may affect bricks only in hot-spots in kiln</td>
<td>(i) Change
 (ii) Add sand
 (iii) Use less fuel. Try to avoid hot-spots by distributing fuel differently</td>
</tr>
</tbody>
</table>

SHAPE

<table>
<thead>
<tr>
<th>SHAPE</th>
<th>PROBABLE REASON</th>
<th>POSSIBLE SOLUTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>(a) Slumping - one stretcher face is wider with a bulge running the length of the brick (all types)</td>
<td>(i) Too soft when moulded
 (ii) Handling too rough</td>
<td>(i) Use a drier mix
 (2) Take more care</td>
</tr>
<tr>
<td>(b) Rounded corners (sand moulded)</td>
<td>Not enough clay pressed into mould box, or rough handling</td>
<td>Make sure mould box is filled, or handle wet bricks more gently</td>
</tr>
<tr>
<td>(c) Raised corners (slop moulded)</td>
<td>Corners stick to mould when brick is released</td>
<td>Use sand in mould or make sure mould is wet enough</td>
</tr>
<tr>
<td>(d) Stacking marks (all types)</td>
<td>Bricks moved too soon from drying singly on edge to stacking</td>
<td>Make sure bricks are dry enough before stacking</td>
</tr>
<tr>
<td>(e) 'Lips' or 'flashing' (usually sand or slop moulded)</td>
<td>Mould worn, clay 'seeps' out, or moulder not 'striking off' excess</td>
<td>Replace mould, or take more care striking off excess flash</td>
</tr>
<tr>
<td>(f) 'Banana' shapes (all types)</td>
<td>Top drying faster than bottom</td>
<td>Gently turn bricks during drying</td>
</tr>
<tr>
<td>BRICK PROBLEM</td>
<td>PROBABLE REASON</td>
<td>POSSIBLE SOLUTION</td>
</tr>
<tr>
<td>--------------</td>
<td>----------------</td>
<td>------------------</td>
</tr>
<tr>
<td>3. STRENGTH/SOUNDNESS
 (a) Weak and crumbly (all types)

 (b) Cracking (all types)
 (i) Straight cracks at right angles from one long face

 (ii) Random surface cracks

 (iii) Bulging cracks or blisters

 PROBABLE REASON

 (i) Underfired - detectable by dull 'clunk' not sharp ring when bricks are knocked together

 POSSIBLE SOLUTION

 (i) Use more fuel, or change fuel distribution, or modify kiln design</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| **4. APPEARANCE**
 (a) Contaminated or distorted surface *(all types)*

 ![Image of contaminated or distorted surface](image5.png)

 (b) 'Spalling' - part of surface 'blown away' *(all types but particularly extruded)*

 ![Image of spalling](image6.png)

 (c) Drag marks *(extruded & slop moulded)*

 ![Image of drag marks](image7.png)

 (d) Efflorescence - crystalline deposit on surface *(all types - appears after manufacture)*

 ![Image of efflorescence](image8.png)

 PROBABLE REASON

 (i) Drying too fast

 (ii) Differential drying shrinkage caused by presence of lumps of drier material or stones

 (i) Surface heated too quickly - vitrifies before gases escape

 (ii) Presence of lime in soil causes blister - even 'popping' (can appear after manufacture - lime blowing)

 POSSIBLE SOLUTION

 Dry more slowly or add sand to mix to decease shrinkage

 Mix better and/or sieve out stones

 (i) Slower firing – especially around firing tunnels or near fuel

 (ii) Sieve out lime or crush and mix better (powdered lime can act as a flux and reduces the energy/fuel needed)

 Ensure floor is clean & smooth

 Slow down initial kiln firing process (up to 100 °C)

 Make sure wires are clean &/or lubricated with water

 Salts tend to be near surface, so discard top most soil
Assessing brick production

Laboratory tests

If bricks have to satisfy an official standard, they will probably have to be tested in a laboratory. These tests will need to be repeated periodically to maintain quality control. Tests normally specify the sizes for bricks and the acceptable compressive strength - how much weight they can bear before crushing. For example, in Zimbabwe 'common' bricks are nominally 220 x 105 x 75 mm and have a crushing strength of 7 MPa. For certain uses, such as damp-proof courses, water absorption or suction rate may also be specified.

Raw material tests

The quality of brick which can be made at a particular site is largely predetermined by the type of soil available. There are some simple soil tests which don't need very special equipment. In the sedimentation jar test, a sample of soil is dissolved in a jar of water. When the soil settles you can get an idea of the fractions of clay, fine and coarse sand that are present. Another test is the linear shrinkage test. A sample column of wetted and mixed soil is pressed into a mould and allowed to dry. The shrinkage indicates how much clay there is in the soil and whether problems can be expected when drying bricks. Soil test are useful indicators, but you really only find out whether good bricks can be made by firing samples. Before investing in a full size kiln, however, it is possible to fire cubes or eggs of soil either in a laboratory kiln or a simple field oven.

Conclusion

These guidelines will help field-workers judge the quality of bricks. Furthermore, if the information presented is used as a basis by those working with brickmakers, it will go some way to establishing an agreed approach to assessing the technical problems they face and proposing appropriate solutions. That is, solutions which make the best use of available resources: are affordable, manageable, cost effective, and - ultimately - successful.

2 See Building Materials in Developing Countries (Spence & Cook, John Wiley, 1983) and Materials of Construction (Smith & Andres, McGraw-Hill, 1988) for examples of specifications.

3 These and other tests are specified in Small Scale Brickmaking (Smith, ILO Technical Memorandum No. 6)

4 Technology and Underdevelopment (Stewart, Macmillan, 1978)
Reference and further reading

- Sustainable Small Scale Brick Production: A question of energy, Theo Schilderman, 1999, Practical Action Technical Brief
- Evolving a Standard to Compare the Energy Efficiency of Brick Firing Processes, Kelvin Mason & Ray Austin, Practical Action Technical Brief, 1998
This technical brief was originally written for basin, Building Advisory Service and Information Network, prepared by Kelvin Mason (June 1998)

Website: http://www.gtz.de/basin

For further information contact:

Practical Action
The Schumacher Centre for Technology & Development
Bourton Hall,
Bourton on Dunsmore,
Rugby CV23 9Z,
United Kingdom
Tel: 44 (0) 1926 634400
Fax: 44 (0) 1926 634401
E-mail: infoserv@practicalaction.org.uk
Website: http://www.practicalaction.org

This Technical Brief is possible thanks to the collaboration of DFID-UK and The Tony Bullard Trust.