
Imperial College of Science, Technology and Medicine

University of London

Department of Computing

A Virtual Open Organisational Platform

For the Open Coop

By

THOMAS J. SALFIELD

 Supervisor: Professor Morris Sloman

Submitted in partial fulfilment of the requirements for the MSc Degree in

Computing Science of the University of London and for the Diploma of Imperial

College of Science, Technology and Medicine.

September 2005

1

Abstract

This paper investigates possible solutions to the problems of governing virtual

organisations in the context of one particular organisation, the Open Coop.

Taking a process oriented approach to analysing organisations, the paper

documents the process of designing and implementing an Open Source

platform which enables virtual organisations to use a constraint-based notation

to specify and enact their governance processes, define sub-groups, and

allocate roles.

Acknowledgements

I would like to extend my thanks to Professor Morris Sloman of the Department

of Computing for supervising this project and helping me to evolve my ideas;

and to Emile Lupu for his thought provoking comments.

Dr. Gary Alexander, Josef Davies-Coates, and Oliver Sylvester-Bradley from the

Open Coop helped make this project possible and I would like to acknowledge

Tav of Espia for his time spent on valuable technical discussions.

Finally I am indebted to my family for their unwavering support and to Sonia Ali

for her brilliant ideas and lovely cooking.

2

Table of Contents

1 Introduction..5

1.1 Motivation for the Project...5
1.2 Overview...5

 1.3 Report Structure... 6
2 Background ..8

2.1 The Open Coop ..8
2.2 Collaborative Technologies...11
2.3 Open Organisation...12
2.4 The Cooperative sector..12

3 Literature Review...14
3.1 Virtual Organisations...14
3.2 The problems of governing a virtual organisation................18
3.3 The problem of establishing trust in virtual organisations....19
3.4 Modelling Processes – levels of decomposition20
3.5 Processes and Activities as Means of Achieving Goals........23

4 Use­case Scenarios and Specification ..24
4.1 A Hypothetical Open Source Project....................................25
4.2 The Open Food Co­op..30
4.3 VOOP Specification : System requirements35
4.3.1 Groups ...35
4.3.2 The User...38
4.3.3 Processes Types..39
4.3.4 Distributed Features...47

5 Architectural Design ..48
5.1 Component­based Workflow..48
5.2 Why NOT use an existing workflow engine51
5.3 The VOOP Architecture..54

6 Implementation...63
6.1 Choice of implementation language......................................63
6.2 Python­based Tools...65
6.3 Authentication with Twisted Cred..66

 6.4 Components, Interfaces and Adapters 68
6.4.1 Interfaces..68
6.4.2 Components ...69

 6.4.3 Adapters ..70
 6.5 Web Templating Using Nevow ..71

6.5.1 Rendering Interfaces with Formless..................................71

3

 6.5.2 STAN ...72
6.5.3 LivePage...72

 6.6 Choice of Database..73
 6.6.1 Why an object database? ...73
 6.6.2 Why ZODB?...74
 6.7 The Potential for Distributed Services in VOOP76

7 Constraint­based Workflow Definition Notation...78
7.1 Basic Workflow Definition...78
7.2. Branching on Preconditions...80
7.3 Role Creation...80
7.4 Component Configuration ...81
7.5 User Interface Issues...82

8 Evaluation and Testing...83
8.1 Testing the Application...83

 8.2. Achievements and Limitations..88
 8.3 Possible Usages...89
 8.3.1 Groups, Trust, and Experimentation with Processes.........89
 8.3.2 Dynamics of Groups..90
 8.4 Future Development and Research.......................................92
 8.5 Conclusion..94
9 References..95

4

1 Introduction

1.1 Motivation for the Project

The Open Coop is a cooperative and a virtual organisation, and functions as a

network of member-governed organisations. The author of this paper is a

founding member of the Open Coop. The Open Coop seeks to create

partnerships between its member organisations.

The author was surprised to find that despite the success and maturity of much

Open Source software, and the fact that most Open Source projects are

member-governed virtual organisations, there is little Open Source software

available for the formation and governance of organisations in a virtual

environment. In addition, most traditional cooperatives whilst member

governed, do not have any method of governing their organisations in a

dynamic and geographically distributed way.

This project aims to specify the requirements for forming and governing

organisations in the virtual realm, and to implement a prototypical solution.

1.2.Overview

The project focuses on building a platform for forming and governing member-

run organisations in a virtual environment. Taking a fundamentally process-

oriented approach to analysing organisations, this paper outlines the process of

design and implementation of a Virtual Open Organisational Platform.

One key difference between this, and other platforms for virtual organisation is

that it is intended to be an open access system facilitating formation of

5

organisations in the virtual environment. The platform will be web-based,

allowing any web-user to create an identity and begin taking part. There must

therefore be clear mechanisms for users to gain the organisational roles

necessary to take part in various aspects of an organisation. There will need to

be mechanisms for individuals or groups, to “bootstrap” a virtual organisation,

giving it clearly defined decision-making, and role allocation, mechanisms.

1.3 Report Structure

The structure of the remainder of this paper is outlined below.

Chapter 2 briefly describes the Open Coop as well as some key background

concepts.

Chapter 3 reviews relevant literature regarding the study of virtual

organisations as well as the study of processes in organisational theory.

In Chapter 4 two use-case scenarios are considered, and some key features

are distilled into a functional specification.

In Chapter 5 the overall architecture of the system is described.

In Chapter 6 some key aspects of the implementation are highlighted.

Chapter 7 explains the workflow specification notation which is used to

represent types of organisational process in the system.

In Chapter 8 some initial testing is undertaken and the implementation is

evaluated.

6

Chapter 9 suggests possible future development directions for the

implementation, as well as further research which could be undertaken.

7

2 Background

In this section the context of the Open Coop, and relevant background concepts

are discussed.

2.1 The Open Coop

The Open Coop is a collaborative network of 'social enterprises', 'social

entrepreneurs', and cooperatives. By creating greater collaboration amongst

many such organisations and individuals, the Open Coop plans to increase

efficiency of all member groups through effective partnership working. The

fundamental strategy is for these small groups to pool resources in those areas

where there are economies of scale, whilst maintaining autonomy in other

areas. So for instance groups might share office space, accounting functions, or

marketing campaigns wherever this is mutually beneficial. Such partnerships

need to be able to effectively make collective decisions in order to share

resources and collectively develop projects. Facilitating flexible collaborative

creation and governance of partnerships developed by the Open Coop, is the

core goal of this project.

The Open Coop1 is in many senses a virtual organisation. It is a partnership

between many autonomous organisations. Existing member organisations are

predominantly UK based due to an initial UK membership drive. However future

membership drives are expected to be more international in scope. Member

organisations are spread around the country and therefore require computer

supported methods of organisation. Further, the coordinating group of

members is itself made up of a partnership of individuals and organisations.

The Open Coop does not have any physical office.

1 The Open Coop is legally constituted as a Limited Liability Partnership which is a new organisatio#nal
form which allows partnerships to have flexibility in governance structures whilst retaining limited
liability. LLPs were created by the Limited Liability Partnerships (LLP) Act 2000.

8

2.2 Collaborative Technologies

It is recognized by the Open Coop that to achieve flexible collaborative creation

and governance of partnerships, will require a cutting-edge suite of

organisational technologies, as well as facilitation techniques and technology

training. First steps have been taken in the Open Coop's Corporate Plan. The

Open Coop has recruited a number of member groups and has regular open

meetings focused on building partnerships with specific purposes.

There is some basic collaboration technology in place at the Open Coop. This

takes the form of a wiki2-based content management system, which functions

as a basic but effective platform to organise the company and involve

participants in building the knowledge base. Further there is an IRC (Internet

Relay Chat) channel used which takes advantage of the latest in IRC bot

technology3. While these technologies have been useful as a first-stage portal,

the Open Coop requires a number of more targeted technologies in order to

effectively progress towards its goals.

In particular the application development goals are:

● a system for governing the Open Coop's various initiatives in a distributed

and geographically dispersed manner;

● a project management system with integrated “smart contracts“ [1]

● an ethical market place with trust and reputation mechanisms built-in.

2 According to Ward Cunningham the inventor of the wiki, a wiki is “The simplest online database that
could possibly work.” http://wiki.org/wiki.cgi?WhatIsWiki

3 An IRC bot is a set of scripts or an independent program that performs special functions on Internet Relay
Chat. In particular an the Open Coop they are used for logging the channel, collecting statistics, leaving
messages for other users, looking up words and etymology, finding the latest exchange rates, and being
rude and offensive in a funny way. http://en.wikipedia.org/wiki/IRC_bot

9

Since the first of these has been identified as the most urgent target by the

Open Coop members, this project will focus on - a distributed organisational

governance system.

This organisational governance system will aim to be an effective system for

the Open Coop and therefore should aim specifically to facilitate the types of

organisational governance relevant to cooperatives, social enterprises and

partnerships between such organisations. Since the Open Coop is a virtual

organisation, it is also hoped that this project will contribute more broadly to

solving the issues of distributed governance in virtual organisations.

Aptly named, the Open Coop is both an open organisation and a cooperative.

Various aspects of the design of the organisational governance system will be

informed by these characteristics of the Open Coop, therefore both concepts

are briefly reviewed below.

10

2.3 Open Organisation

Open organisations are a new phenomenon, and are probably best defined as

follows:

“An open organisation is an organisation open to anyone who agrees to abide

by its purpose and principles, with complete transparency and clearly defined

decision making structures, ownership patterns, and exchange mechanisms;

designed, defined, and refined, by all members as part of a continual

transformative process.” [2]

The key point is that open organisations are defined by their transparency,

which includes transparency of the mechanism by which one can join the

organisation and assume various roles, and transparency in the ways decisions

have been made and will be made in the future.

In the body of work relating to open organisations [3] there is a focus on

designing, and agreeing on, explicit processes4 which might otherwise take the

form of unstructured social interactions between members. It is argued that, in

order for a group to be transparently and purposefully organised, the

interactions which occur within the group must be formally structured in the

form of processes.

The design of this project was informed greatly by the small but well organised

body of work relating to open organisations.[3]

4 A full discussion of what is meant by processes is included later in the paper.

11

2.4 The Cooperative sector

As well as being a cooperative venture, the Open Coop aims to serve the

cooperative sector and other member-run initiatives such as community groups

and Limited Liability Partnerships. According to the International Cooperative

Alliance:

“A co-operative is an autonomous association of persons united voluntarily to

meet their common economic, social, and cultural needs and aspirations

through a jointly-owned and democratically-controlled Enterprise.” [4]

This emphasizes the need for democratically control organisations which are

considered cooperative. It follows that in order to have a cooperative virtual

organisation we must have a way of governing the organisation in a democratic

and geographically distributed manner. Since in our analysis organisations

consist of participants interacting through processes, the act of governing the

organisation is the act of collectively choosing processes and the roles in those

processes. As a result the system which I design and implement in this project

is intended to (in the context of a virtual organisation) :

 facilitate the collective choice of processes, and roles in those

processes, in a democratic and geographically distributed manner.

“Co-operatives are equitable businesses with a social purpose, democratically

owned and controlled by their members. There are nearly three-quarters of a

million co-operatives worldwide, providing jobs for over 100 million people -

more than are employed by all the multinational corporations in the world.” [4]

This statement hints at the potential commercial power of all existing

cooperatives, if properly connected and coordinated. The Open Coop's vision is

to create a system in which all these organisations and similar membership-

based organisations can easily create collaborative initiatives which are

12

mutually beneficial. The desired result is, increased efficiency of their

operation and cohesiveness of the cooperative sector5 .

The potentially very large amount of users of a partnership management

system for the cooperative sector has the important implication that the

application should developed in this project should be highly scalable. At the

current scale, with the Open Coop as a start-up, a centralised web-server will

be sufficient. However since in the future it is likely that this system will have

very high volume and traffic, it is essential that the system should be able to

work over multiple servers, ideally using some kind of distributed objects

system. More generally, all efforts should be made to make the system easy to

extend into a scalable system. In addition since this application is likely to be

the first in a suite of collaboration applications for the Open Coop, it is

important to use a framework into which future applications could be easily

integrated.

5 The “cooperative sector” is used loosely here, to refer to member­governed initiatives that the Open Coop
aims to served.

13

3 Literature Review

3.1 Virtual Organisations

While the Open Coop is a profit-making membership organisation, there are

many areas of academic work which have influenced the Open Coop's strategy

and philosophy. Areas include, cybernetics, systems theory, the viable systems

model and monetary theory. However most relevant to this project is the body

of work surrounding virtual organisations. This project aims to build a platform

which is applicable to a specific type of virtual organisation – those which are

democratically governed, open organisations. Further the focus of this project

will be the governance6 processes which occur within such virtual open

organisations.

Over recent years interest in “virtual organisations” has increased in many

fields of academia from sociology to computer science. However the

development of a generally accepted theoretical basis of virtual organisations

has been elusive. There is not even full consensus on the definition of virtual

organisations and various surrounding concepts. Perhaps the most complete

effort at reaching consensus on the fundamental concepts of virtual

organisation comes from the EU TrustCom project. [5] This project offers a

summary of many definitions and key concepts relating to virtual organisations.

One definition which stands out as best encompassing the others is:

“A Virtual Organisation is a combination of various parties (persons and/or

organisations) located over a wide geographical area which are committed to

achieving a collective goal by pooling their core competencies and resources.

The partners in a Virtual Organisation enjoy equal status and are dependent

upon electronic connections (ICT infrastructure) for the co-ordination of their

activities.” [6]

6 Organisational Governance is defined in section 2.6

14

This project is also informed by earlier work on virtual organisations. Handy

stresses the importance of trust in virtual organisations, contrasting virtual

organisations to traditional organisations in which monitoring and auditing tend

to replace the need for trust.[7] Handy argues powerfully that in a virtual

organisation since day-to-day monitoring is not possible there is a need to

establish more enduring forms of trust. However, paradoxically it is also harder

to establish trust in virtual organisations due to the fact that people may never

meet in person, and they may not be part of the same legal organisation.

Therefore it is clear that a system for governing virtual organisations should

focus on the issue of establishing trusting relationships. One way this can be

achieved is through transparency of data relating to past interactions of a user

in the system. This, is also an essential aspect of open organisations, and

allows each actor in the system to assess the trustworthiness of potential

collaborators based on past performance. This has the important implication

that:

All data in the system should be transparent to all users, further a

transaction system should be maintained in which each interaction

between a member and an organisation is recorded.

As part of the THINKCreative project, Camarinha-Matos and Abreu have

suggested four complementary perspectives from which we can model virtual

organisations, as shown in the diagram below. [8]

15

Relations models describes the forms of interrelationship that can occur

between components within a network. For instance, the following types of

relationships can be identified: control relationships (which identify the

structure of authority), dependence relationships (which identify topological

dependence), ownership relationships (which define the boundaries of each

agent).

Role models that describe all roles and their positioning within the network

structure. A role model implicitly defines a topology of interactions.

Process models that focus on dynamic courses of events. Some generic

concepts such as activity and actor, time dependencies such as equal, during,

starts, finishes, and resource-related perspectives such as necessary,

sufficient, have to exist.

16

Deontic / Values Models that define constraints for all agents within a network

at different levels, such as:

● economic level - where one may place constraints about cost, utility, etc,

● organizational level - where behaviour constraints relating to one’s

organisational role are placed,

● operational level - where one may place constraints about the order and

interdependencies of actions that need to be performed in order to meet an

objective.

● computational level, where constraints about resources sharing, service

and communication interoperability are placed.

Fig 3.1 Virtual Organisation Modelling Perspectives - Extract from

TrustCoM [5]

This project attempts to design and implement a system which facilitates the

flexible formation of groups, specification of processes, assignment of roles,

and enactment of processes. The act of specifying a process, assigning roles,

or creating groups, corresponds closely to the act of modeling a virtual

organisation. Clearly an operational platform will also require the additional

functionality to enact the specified (modelled) processes, and for the groups

and individuals to be able to dynamically change their relationships to each

other.

Thinking about the implementation from each of these four perspectives, will

help us evaluate its flexibility in terms of the kinds of organisational situations

which can be specified and realised.

17

3.2 The problems of governing a virtual organisation

Crowston and Short [9] follow Mohr [10] in arguing that since organisations are

too multi-dimensional to make generalisations about, processes are a useful

sub-unit for analysing and reasoning about organisations.

Organisational governance is the subject surrounding the set of mechanisms

which govern an organisation. This should be distinguished from management,

which is the subject of temporarily assigned roles and responsibilities in an

organisation. A management mechanism can always be changed, removed, or

replaced by governance mechanisms. In this sense management mechanisms

are subordinate to governance mechanisms which provide the highest level of

authority in any organisation. Since every decision cannot be taken through

the governance mechanism, it is necessary to delegate roles and

responsibilities.

Conventionally, governance is prescribed by the legal form of the organisation.

For example, a limited company has a set of shareholders who meet at an AGM

and appoint the board of directors, as well as top management. A majority of

shareholders always has the right to change the management or veto actions.

In a cooperative or a partnership this is somewhat different. For instance, in

cooperatives there is democratic governance by the members. Of course such

democratic governance can take various of forms, so in the case of a

cooperative, there is a need for explicit decisions to be made about the

fundamentals of governance.

Virtual organisations often take the form of partnerships, whether or not they

are legally constituted as such. Managing partnerships successfully is well

known to be a minefield. Part of the problem is establishing who has the

authority to make decisions. This can lead to disputes, and disjuncture in the

partnership. By properly establishing governance mechanisms before

embarking on a partnership such problems can be mitigated. However

18

specifying governance mechanisms is easier said than done. The problems are

twofold. Firstly, most people have very little understanding of organisational

governance mechanisms, and there is little guidance available. Secondly, in

virtual organisations, there are few tools which allow the flexible specification

of governance mechanisms. Many virtual organisations use technologies which

do not facilitate sufficiently structured communication. For instance, many

Open Source projects, use IRC and wikis as their main mode of communication

(including the Open Coop). Since organisations are most usefully understood

through analysis of processes, and governance is no exception, such

unstructured forms of communication are insufficient. As a result governance

mechanisms often become hidden, and informal, implicit in the social structure.

This project aims to create a system in which:

virtual organisations can flexibly and explicitly define and enact their

governance processes in a structured way.

3.3 The problem of establishing trust in virtual organisations

Often, custom-built platforms for virtual organisation are intended for

facilitation of already established organisational structures. In the case of the

Open Coop it is expected that organisations will be created through a virtual

platform. For this reason users will not have a priori knowledge of each other's

identities. Establishing the trust necessary to create and dynamically govern

organisations (or ad-hoc groups) virtually, creates a special set of problems

regarding authenticating users, allocating roles for accessing services and

resources, and setting permissions for participation in the organisation.

19

In order to deal with this problem, Keoh, Lupu and Sloman [11] suggest using

user-role assignment policies which are rules for acquiring the roles. In the

context of this project, this will be achieved by defining the organisational

structure in terms of roles which are assigned to groups. Then in order to

specify policies for assigning roles to members of the organisations, we will

need to define criteria for joining and leaving the group. Since in our approach

we will be focusing on processes, the user-role assignment policies will take the

form of processes for joining and leaving the group. Once a user is a member of

a group she will acquire all roles associated with that group.

By being transparent and explicit about group admission processes we build

trust in the organisation, because behaviour is expected to be consistent with

the admission criteria.

3.4 Modelling Processes – levels of decomposition

In the field of business process modelling, and business process re-engineering,

processes are considered to consist of activities.[12] However, often processes

contain so many activities, that the activities are usefully grouped into nested

sub-processes. Varying approaches have been suggested for defining such

process hierarchies. [12],[13]. For instance, Davenport and Short [13] group

activities into process types on the basis of the entities or sub-units involved,

the types of objects manipulated, and the type of work activities taking place.

However, having many nested processes can become too complicated for the

task at hand, and the question arises, to what level should we specify the detail

of processes. Put differently, what is the level of atomicity of an activity. As

Crowston and Short [9] point out, the appropriate level at which we should

specify the process is usually determined by the purpose of the analysis. We

should specify process types to the level of detail where the salient differences

20

(according to the purpose of the analysis) between such types are expressible.

This is the principle of generativity of a specification or model, as explained

below.

Crowston and Short [9] argue that rather than grouping activities into

processes, we should group activities into higher-levels of activities. For

instance, most workflow applications specify processes to the level of detail of

individual user-tasks. Since there are likely to be literally millions of possible

activities at this level, there is little possibility for standardisation of reusable

components representing higher-level activities [14].

Crowston and Short [9] suggest that conciseness and generativity are two key

properties necessary for a process model or specification. The benefits of

conciseness are clear. Generativity is the property which holds when the

representation of a type of process not only specifies the current type of

process but also suggests possible alternative types of processes which could

be created. This is an important property for allowing experimentation,

comparison, and improvement of processes.

So, for instance, if we were deciding which governance process best suits a

purpose and a part of the governance process included voting, we would not be

interested in the order in which votes are cast, which specific users get to vote,

or even how the action of voting occurs at all, we will be interested in the

voting algorithm itself.

An example voting algorithm might look like this:

“people in groups X, Y, and Z can vote “yes” or “no”, and once more

than 60% of people have voted, if more than 50% voted “yes” then we

will implement the policy, otherwise the policy will be revised, and we

will restart the process.”

21

Similarly in a debate activity, we may want to specify different types of debate

such as single threaded, or multi-threaded, synchronous or asynchronous, but

not the detail of how each individual process will be threaded. This lower level

would be more appropriate to, for instance, a psychological study of how

people react to one another's comments, but is not relevant when considering

the goals of processes at an organisational level.

Shi, Lee and Kuruku [14] have argued that business process automation, has

succeeded through the practice of re-engineering business processes and

standardising them to fit “best practice”. This has resulted in models that lack

flexibility and applicability for non-standardised industries. In addition there

have been found to be major barriers to organisational change, causing great

cost where the “best practice” processes differ greatly from the existing

processes. This includes resistance from employees who are reluctant to

change the existing processes in their organisations. Shi et al, [14] follow

Zhuge [15] in suggesting developing a “component-based workflow” system. A

workflow component is defined as a complete business process unit and is

analagous to higher-level activities.

Most workflow solutions have tended to distribute processes to the level of

individual user-tasks. Since there are so many possible variations at this level

there is little possibility of useful standardisation.

22

3.5 Processes and Activities as Means of Achieving Goals

Processes can be conceptualized as ways to accomplish goals. Indeed,

processes are often named after the goals they accomplish. For instance, in the

context of governance, we might have a process to “create a subgroup”, “join a

group”, “make a policy decision”. Such goals can be considered subsets of

states which satisfy a condition [16]. Goals can therefore be effectively

represented as constraints [16],[17], [18]. This is useful for comparing the

results of different types of processes. For instance we may want to compare

the types of policy decisions that get made when different voting algorithms

are used. The goal also provides a heuristic for assessing which component

activities are likely to be relevant.

It is also useful to express higher-level activities as goals and represent those

goals as constraints. For instance the “Vote” component might have a

constraint that the percentage of people who have voted should be greater

than 50%. Once such constraints are fulfilled, the activity (goal) is complete,

and the transition to the next activity can take place

23

4 Use-case Scenarios and Specification

The goal of this project is to develop an application, in which individuals or

organisations can form and govern virtual organisations or virtual teams. The

application will also contain a framework within which virtual organisations can

flexibly specify and enact their governance processes.

The application will be known as the Virtual Open Organisational Platform or

VOOP.

The Open Coop aims to use VOOP in order to map existing and prospective

member organisations into a system of interrelated groups. In such interrelated

groups, all participants can see the relations between the various groups, the

members of the groups, the governance processes of the groups which are in

progress, and those governance processes which are completed and no longer

active. In this framework organisations will be "open organisations" in as much

as they will have:

1. Transparency in the roles of participants

2. Clearly defined, and well documented, governance processes

3. Clearly defined rules surrounding participation in various sub-groups.

Such organisations or teams will be represented in VOOP as 'groups'. The

interactions involved in governing the group will take the form of a set of

processes.

Group creation and development is expected to reflect either the structure of

an existing organisation, or a new organisation coming into existence in the

virtual realm.

Since organisations are usefully analysed in terms of their processes [9][10],

24

VOOP will facilitate the creation of, and participation in, governance processes.

In particular the project will focus on the flexible specification and enactment of

governance processes.

The following are use-case scenarios identified by the Open Coop which VOOP

should enable. The first is a hypothetical use-case whilst the second is a use-

case of an Open Coop project which is currently being developed by Dr Gary

Alexander, Senior Lecturer in ICT at the Open University7 .

4.1 A Hypothetical Open Source Project

Much research exists concerning the social structure of Free Software and

Open Source projects [19] as well as Open Source projects as virtual

organisations. Crowston and Howison [19] follow many authors - Cox[20],

Gacek et al. [21], Mockus et al. [22], in characterising FLOSS8 projects as an

"onion ring" diagram (as depicted in Figure 4.1). Moving from the centre of the

diagram to the outer layers there are likely to be more participants and a lower

level of involvement. At the centre are the few core developers who contribute

the majority of the code and make the decisions about the evolution of the

project. In the next layer come the co-developers who tend to contribute bug-

fixes and make minor alterations to the code. Then come the active users who

contribute bug reports and feature requests and can be quite large in number

for some projects.

7 http://sustainability.open.ac.uk/gary/
8 FLOSS – Free Libre and Open Source Software

25

Figure 4.1: A synthesised FLOSS development team structure

(extract from Crowiston and Howison [19])

For a hypothetical example of a FLOSS project, with formally defined

governance procedures, corresponding to the structure outlined above, the

process of mapping the project into VOOP is outlined below. It should be

stressed that many FLOSS projects do not currently have a formal governance

structure. However according to the principles of open organisation, these

projects are not open organisations since they do not have a written charter. It

might be the case that were such an organisation to formalise its existing

social structures, in order to become an open organisation, that processes

similar to those specified below would result.

Formalising organisational processes should help organisations to ensure their

organisational transparency. This is a key factor in simplifying participation in a

core organising group for newcomers. Further, it should ensure that processes

occur in a way which corresponds to the intentions of participants. Since

unstructured interactions don't necessarily lead to the processes which were

envisaged by participants, organisational governance/management is the

activity of choosing processes [3].

26

4.1.1 Defining Organisational Processes

A core developer could set up a group on VOOP. She would first define a

process relating to the high-level governance of the organisation. This might be

considered the ultimate source of authority in the group/organisation. An

example would be:

"policy proposals are debated for a week after which there is vote requiring the

support of a majority of core developers. Also policy decision can be reversed

with the agreement of more than 70% of the core developers."

Once a high level governance process like this is defined, the group is able to

propose and approve lower level governance and management processes. At

this stage the core developer creating the group might move on to the next

stage of group creation, creating sub-groups and roles in the organisation.

Alternatively they might choose to define some lower level processes which are

already well established in the organisation. So for instance she might now

define the following processes:

i) Proposals for developing a new branch of code. This might look like

this:

"debate will continue for 1 day, then the proposal will be rated between

+2 to -2 within the next 2 days. If the average rating is greater than 1

then the project will be taken to the implementation phase in which

tasks, milestones, and dependencies will be mapped out and the

developers will be assigned/assign themselves to tasks. After 3 months

the implementation will be reviewed".

27

ii) Another process might be "bugtracking". Here the process could be

defined as:

"any "active user" can submit a bug document, then a core or co-

developer attends to it, and a core developer can archive it once it is

fixed."

iii) In addition creating a feature request process would be a useful way

of interfacing with the potential market for modifications to FLOSS

software.

4.1.2 Creating Groups and Associated Roles in Processes

The group creator would then create three sub-groups with roles relative to the

governance processes.

First, the Core Developer role would be the only role/group with permissions to

take part in high-level governance process in any way. Second, they might be

the only ones to be able to rate lower-level proposal for developing a new

branch of code.

Additionally more specific roles such as "release coordinator" might be defined

for individual members of the core group.

The co-developer role would have the permissions to contribute to processes

relating to developing a new branch of code. However they would not be able

to vote on proposals in this category.

Active users would be able to contribute to discussions and submit bug reports

and feature requests as part of a code branch. If they so choose they should be

able to attach bounties to feature requests and make them open for

28

donations/bounties from others (this part will be beyond the scope of the

project).

The group creator should send invitations to and/or create accounts for each of

the core developers, co-developers and active users, to join VOOP. Each

developer should then map themselves into the system by creating a personal

profile with various attributes which should be configurable by group or by role.

4.1.3 Processes of Entry and Exit to the groups

● Entry and Exit to the Core Developers Group

Once a Core Developers group is set up, entry to the group could require the

approval of a certain percentage of the existing core developers. Other

criteria of joining the group could be expressed informally, and implemented

socially within the system. For instance if the group requires that to be a

core developer an individual must have contributed more than 10,000 lines

of code, then it will be the responsibility of each core developer not to

approve an individual who has contributed less than this. It is normal in Open

Source projects that since there are no contracts involved, developers can

exit the project at will.

● Entry and Exit to the Co-Developers Group

In order to become a co-developer an individual must get the approval of at

least one existing co-developer or core developer.

● Entry to the Active Users Group

Active users, should be able to register themselves without any approval,

They should be able to create process instances under the classifications of,

feature proposals, or bug reports.

29

● Benefits of using VOOP

FLOSS projects have a tendency to have unclear and informal mechanisms

of governance and decision making. By mapping their members and

processes into VOOP they will formalize their governance mechanisms, and

thereby increase their transparency, making it clear how to get involved and

how decisions have been and will be made.

4.2 The Open Food Co-op9

Open Food Co-op, is an initiative of the Open Coop and is in the early stages of

development. This is likely to be one of the first projects to pilot VOOP. The

idea is to create a collaborative partnership between local organic food

producers, shops/agents, distributors, and consumers.

4.2.1 Defining Organisational Processes

Once a group is set up on VOOP the high-level policy process will have to be

defined. In this case it is expected that a Co-ordinating group will make policy

for the whole group on a consensus basis. The process will look like this:

i) An issue is raised

ii) Coordinating group has a discussion.

ii) Coordinating group produces a proposal for a process which is

approved by consensus (vote with single member veto).

iii) Proposal put to all members of the Open Food Coop for comment and

approval by majority vote.

iv) If the proposal is approved by the Open Food Coop, it is implemented.

Otherwise the Coordinating group reviews and revises the proposal, and

9 Open Food Co­op ­ http://open.coop/tiki­index.php?page=Open+Food+Co­ops

30

either presents a new version or rejects the proposal.

The group creator could then go on to define further organisational processes

before creating the group itself. Alternatively further processes could be

defined from within the group using the above policy process. For instance a

process may be defined corresponding to the process of getting food from

producer to the consumer. This might look like this :

i) Food producers enter their produce for the next month or week into

online forms.

ii) Consumers view the listings of food offered, select what they want,

and select the shop/depot to which it is to be delivered. (In many cases,

the consumers agents will do this on behalf of the consumers.)

iii) A logistics module lists the origins and destinations of produce

needing to be delivered.

iv) The distributors view the listings and indicate which routes they will

be making.

v) The distributors then transfer produce from the producer to the

agents/shop.

vi) The produce and service is rated by the consumer.

N.B Its not expected that the necessary components to realise the logistics

aspects of the process will be implemented as part of this project.

31

4.2.2 Creating Groups and Associated Roles in Processes

Five sub-groups with roles relative to the processes will need to be defined.

Each member may be a member of more than one sub-group and thereby have

more than one role.

i) Coordinating group

The coordinating group plays the main role in high level policy. That is

they respond to issues raised by proposing policies. They also actively

recruit for sub-groups such as producers, agents and distributor.

ii) Producer group

This group includes farmers, gardeners, and food processors (i.e. cheese

makers, cooks) They are able to vote on policies proposed by the

Coordinating group. They are able to put up produce on the consumer-

producer process. Like most other groups they would elect a

representative onto the coordinating group in order to represent their

interests.

There might be different sub-groups within the producer group having

slightly different roles. For instance it is anticipated that there will be

both a farmers' group and a gardeners' group.

The producer group might also have an internal governance process

aimed at optimising collective production to best match consumer

demand.

iii) Distribution group

This group will include farmers and shops, and others who already do

deliveries, to which will be added people willing to take on regular and

irregular deliveries. The main function of this group will be to rationalise

and co-ordinate the desired deliveries. They carry out stage v) delivering

32

the produce from the farmer to the depots/shops. They will also elect a

representative to the coordinating group.

iv) Agents

Agents act on behalf of consumers or producers who do not wish to

participate in the computer network, entering transactions on their

behalf. They will thus fulfill the function of actively increasing the

consumer base (marketing). Agents may choose to work together to

market produce under a collective brand. This would entail having an

internal governance process, as well as defining various processes

around the creation of brand.

v) Consumers

Receive info on what is available/coming soon from producers and

events organisers. Many consumers may not interact with the Food Coop

online but rather buy from an agent in the real world. Feedback from

consumer will be actively pursued by the Food Coop, in order to feed into

the Coordinating group's work. This would entail a process in which

consumers report their experience and any major trends would be

reported to the coordinating group. Consumers will also elect a

representative to the Coordinating group.

4.2.3 Processes of Entry and Exit to the groups

● Entry and Exit to the Coordinating Group

The Coordinating group will consist of one representative from each of the 5

sub-groups. These representatives will be elected by each subgroup, through

a process of continual debate, and voting, which will occur every 6 months.

There will be 1 week of debate by the end of which sub-group members will

be expected to have voted.

33

● Entry and Exit to the producer and distribution groups

This will require approval by the coordinating group. Approval will be

determined by the explicit approval of at least one member of the

Coordinating group but can be vetoed by any member of the coordinating

group.

● Entry and Exit to the producer and agents/shops groups

Anyone can choose to join this group, but those found to be misrepresenting

the Food Coop or flaunting rules can be banned by the Coordinating group.

● Entry and Exit to the consumer group

Anyone can join this group, however agents should actively seek to involve

consumers with relations to them, in order to gain a visible online reputation.

34

4.3 VOOP Specification : System requirements

Here I will layout a functional specification for the implementation of the

application. The features here are a distillation and to some extent a

rationalisation of the requirements laid out in the use-case scenarios, as well

as a few more general points from the Background and Context section.

4.3.1 Groups

G1 Hierarchical group structure

Organisations or teams will be represented as groups. Where an organisation

consists of a number of teams or departments, the group representing the

organisation will have a number of sub-groups. Therefore groups should be

structured hierarchically.

So, for example, within the Open Coop group there might be a Open Food Coop

group, and a Software Development group. Within the Open Food Coop group

there would again be multiple groups, such as the Producers, Consumers, and

Distributors etc.

System requirement: Hierarchically nested groups

G2 A Seed Group

To reflect the fact that the Open Coop is a membership organisation in which

many groups operate, an initial seed group will have to be created from which

users will then be able to navigate to and join the various groups. The seed

group is also the place where organisations new to the Open Coop can create a

group to represent themselves. In the deployment of the software for the Open

35

Coop, this seed group will represent the Open Coop itself.

Since the system is intended to be an open-access system for creating virtual

teams and organisations, any web-user will be able to create a group within the

seed group. In fact its expected that the seed groups functionality will be

restricted to having members join and create groups. That is, there will be no

process for creating new process types in the seed group. This is intended to

allow the seed group to be initially a place of experimentation where users can

test the effects of different governance processes on the evolution of groups.

It is important to realise that the above configuration should be only one

possible deployment of the software. For instance, the permission to create a

new group in the seed group, could be allocated to a different group of trusted

users with relatively stringent entry criteria (e.g. approval of existing

members). Indeed its likely that in the virtual organisations which exist below

the seed group that sub-group creation would be restricted.

System requirement: a seed group should be created from which all

other groups are created and navigated to.

G3 Creating groups

When creating a new group, a user will first be expected to set the purpose and

principles of the group. These are simple text entries which give potential

members or collaborators useful information about the group.

The user will also be expected to define some key types of processes, as well

as assigning roles within them. These are the types of processes which the

group will have on creation. It is important to realise that once the group is

created, new types of processes can only be created through existing

36

processes. The system requirements for process definitions and roles are

discussed in detail later.

In order to have full functionality, groups should normally be created with at

least a minimal set of types of processes which allow:

1. creation of new types of processes,

2. joining or leaving the group,

3. creating a subgroup within the group.

It is perfectly possible that a group would not have all three of these processes

on creation. However since they are normally expected, the user should be

prompted to create each of these types whilst creating a new group.

System requirement: Flexible creation of types of processes when

creating a group. Prompt the user to create core process types, as

well as purpose and principles.

G4 Group functionality

Once a group is created, the group is the place from which new processes are

initiated. Most processes will in some way modify some aspect of the group

itself. For instance, when the process of a new user joining the group is

completed, the user will be added to the group's user list. The user should also

be able to browse from group to group, and browse the users of a group.

System requirement: The user should be able to initiate processes from

within the group (assuming the user has the necessary roles), browse

to other groups, or browse the users of the group.

37

4.3.2 The User

U1 Identity Creation & Login

Since the Open Coop is an open organisation any web visitor will be able to

create a secure identity and begin using VOOP. Once an identity is created the

user will be able to login using that identity, at this stage the user will not be a

member of any groups, but will be able to browse the contents of groups.

System Requirement: Creation of secure identities.

U2 User profiles

The user must have a set of user-attributes which constitute a profile. A user-

attribute will be a label associated with a typed value, for instance the label

might be “age” and the value might be an integer of value 10. It should be

possible for any individual to change their own user-attributes. Users should

also be able to view each other's profiles.

System Requirement: User-editable profiles.

38

U3 Joining Groups and Acquiring Roles

Assuming a user has the roles which are necessary to apply to join a particular

group, on requesting to join the group the user will have to go through the

associated process. It is likely that this process will require the user to submit

some details which are specific to the group. Once a user is a member of a

group, the user will acquire the roles which have been allocated to the group.

System Requirement: Users acquire roles from their groups

4.3.3 Processes Types

Processes are the key mechanism for change in the system. The process types

associated with a group, define the ways in which groups can be changed. By

assigning roles in process types to other groups, we define the ways in which

groups can interact.

In order to demonstrate the effectiveness of the underlying system, it will be

necessary to develop a minimal set of components which can be composed

into process types. Below I have grouped the elements by the process types

they are intended for creating. There are also some extra components which

might be used in many possible types of processes.

39

Creating new types of processes

In order that the governance of groups can evolve its necessary to have a

process type which can be used to create new process types. P1 to P3 are the

components its envisaged which will be required.

P1 Process Type Definition

A flexible way of formally specifying governance processes is essential to this

project, since it is envisaged that many “organisational forms” will map

themselves into the Open Coop system. The Process Type Definition

component will allow the user to compose a process type definition. The

process type definition specifies the order of components in the process and

the conditions (constraints) on which a component activity is considered

complete.

System Requirement: component for flexibly defining the order of

components in a new process type

A process needs to be able to execute different branches of components

depending on whether a certain precondition is met at a certain point in the

process.

For instance in a policy-making process, a vote component might be an

activity which forms part of a “make a policy decision” process which looks like

this:

40

Fig 4.2 Branching in a Workflow on a Precondition

Depending on whether the precondition (“proportion_votes_for > 50%” in this

case) is satisfied we execute either the Implement and Archive components or

the Revise and Restart components.

When the “goal” (constraint) of the vote component is fulfilled the vote activity

is complete and the policy process moves onto the next activity. What the next

activity is, depends on the outcome of the vote with reference to a precondition

(“proportion_votes_for > 50%”) for moving to the the next process.

System Requirement: need for branching in the process-based on

preconditions

The process definition should allow customisation of certain stages in the

process. For instance the voting stage could be configurable to facilitate

41

majority decision or consensus with single member veto. While it is hoped that

the process definition will be configurable through a simple web interface, this

is probably beyond the scope of this project.

System Requirement: configuration of components as part of process

definition

P2 Creating Roles - Assigning Permissions to Groups

Every component in a process has an interface which is made up of a number

of method signatures. Each method signature can be assigned to any number

of groups. The set of method signatures which any group has assigned to it for

a process type is considered their role in the process.

This component allows roles in a process to be created thus assigning access to

methods to members of the relevant groups. This component is of course

dependent on P1, the process type definition component, since it is not

possible to assign method signatures, until we know which components

constitute the process.

System requirements: A component for assigning permissions in a

process type to a group, thus creating roles in a process type each

associated with a group.

42

P3 Create Process Type

Once a process type definition, and the roles in the process type, are fully

specified, the process type will have to be created and added to the list of

processes which can be initiated from the group. This needs to be a separate

component so that it is possible for users to propose process type definitions

and roles, which will only be realised under certain conditions. For instance, we

may insert a vote component between P3 and P2 and then execute a different

branch of the process definition depending on the result of the vote. P3 is

dependent on both P1 and P2 having occurred earlier in the process.

System Requirement : Component to create previously defined process

types

Joining and Leaving Group

J1 to J4 are the components that will be required in order for groups to have

processes with which users can join or leave.

J1 Apply

This component should provide the necessary actions for the user to apply to

join the group. The component should determine any user-attributes which are

required by the group, but not already included in the user's profile. It should

then request that the applying user enters the required details.

For example the main Open Coop group might require the fields: username,

password, and email address. While the Open Food Group might require the

fields username, password, telephone, and vegetarian. When a user who is

already a member of the Open Coop applies to the Food group, they should be

43

requested for their telephone number, and whether or not they are vegetarian.

System requirement: The component needs to be able to identify which

of the required attributes are already fulfilled and which still need to

be added to the users profile.

N.B By assigning the permission for initiating a group's, apply to join, process

we can control who can apply to join a group. For example, if we assigned the

permission to the Open Coop group, it would effectively be possible for every

registered user to join the group. However if we assign the role to some other

group X, then it will become necessary to join X before joining the original

group.

J2 Approve application

In this component someone with the role to do so, can approve the application

which was entered in J1. J2 is dependent on J1. When J2 is complete, the user

who applied in J1 will be a member of the group.

If a group wanted to have some kind of vote on whether or not they should

approve an application for membership, this could be done by inserting a vote

component in the join process, between J1 and J2.

System requirement: Component for a user to approve an application,

and add a user to the group

44

J3 Request to leave

If a user is already part of a group, they should be able to ask to leave the

group using this component. It might also be possible for other users to

suggest that a user is excluded from a group. This could use the same

component, with a slightly different configuration.

System requirements: Component for a user to leave the group

J4 Approve Request to leave

This will remove a user from the group, and is dependent on J3. Of course,

there may be other aspects of this process, for instance if a user is under

contract. If the user has been asked to leave the group by another user there

may be a debate and/or vote involved. Such other components should be

placed between J3 and J4 in order to influence whether or not J4 will be

executed.

System requirements: Component for a user to be removed from the

group

Creating Sub-Groups

Users should be able to start new groups within existing groups by initiating the

process to “create a new sub-group” (assuming they have the necessary roles).

This process constitutes a group design exercise in which the stages of

mapping the corresponding virtual organisation into the VOOP are executed.

These stages will include defining the purpose and principles of the group, as

well as designing the groups process types. Since creating new process types

45

makes use of components P1 and P2 this is a good example of reuse of

component interfaces.

S1 Begin creating a Group

Initially a 'purpose' and a set of 'principles' should be prompted for. This can be

specified in text and act as guidelines for participants to think about the

organisation. The component must also prompt the user to create the types of

process that the group will be initiated with.

System Requirement: Component should prompt for purpose, principles,

and process type creation

The next stages will involve defining governance processes for the group.

Therefore it will be possible to use the components P1 and P2 for defining

processes and creating roles.

S2 Finish Creating the Group

Once the required processes have been added to the group, this component

creates the new group. S2 is dependent on S1. Once this activity is completed

the group will have a new subgroup, with the corresponding processes created

by components P1 and P2.

System Requirement: To be able to create a new group, as a subgroup of

the group where the process was initiated.

46

Policy Document Management Components

In order to be properly considered a governance system it will also be

necessary to have components for managing policy creation. These would

include: proposing policy documents, debating, revising, and voting/rating.

System Requirment: A simple set of components for managing policy

documents

4.3.4 Distributed Features

Ideally this project would be implemented as a distributed system of

communicating web servers. Each server would host groups and would

communicate in order to create seamless services. Anticipated services

requiring distributed communication between instances of VOOP include:

1. Creating relationships between groups on different servers. For

instance a group on one server may have a role in a process in a

group on another server.

2. Creating topological graphs, for instance drawing graphs where the

nodes are groups, and the arcs connecting the nodes are roles in the

processes of other groups.

System requirement: An architecture that supports future development

of distributed services. Due to time constraints it is not expected that

any distributed services will be implemented as part of this project.

47

5 Architectural Design

The previous section specified the required features of the VOOP application.

This section will outline considerations on how to best design the VOOP system

in order to realise those features.

5.1 Component-based Workflow

Software components are reusable sections of code which can operate

independently of each other. A component has an interface which documents

the methods which are available to the outside world. An interface makes it

possible to use the component without understanding how it works. The

concept of an interface maps well onto the idea of a user-interface. Indeed, in

this paper, where an interface is referred to, its methods are user-actions

through which users can interact with a component, thereby accomplishing the

task of the component.

The idea of a component in the context of workflow, is analogous to the

concept of a higher-level activity [9], in the context of the study of processes.

That is, for any process with a particular purpose there are a limited amount of

components, or higher-level activities, that are likely to be involved. For

instance, there are many different processes for buying a meal in a restaurant,

but they are all likely to include the components: order, pay, serve, eat. The

same is true in the field of organisational governance, so for instance the

process of making an organisational policy is likely to include the components:

propose policy, debate, vote/rate, revise, and implement. Thus VOOP will be

implemented as a component-based workflow system.

48

As noted earlier, a higher-level activity can be usefully considered as a goal. So it

would be useful to be able to specify when a higher-level process is complete,

using a representation of the goal. A goal can be effectively represented by a post-

condition constraint. When the constraint is fulfilled a transition will occur from the

current component to the next. Therefore a simple example of a component-based

workflow should look like this:

Fig 5.1 Component-based Workflow with Constraints

The post-condition constraints (A, B, and C above) can be used to configure the

component to behave in various ways. For instance, in the debate component

in a policy-making workflow it should be possible to set the constraint on any

relevant property10 . So the constraint could be set on the time since the

debate started, or alternatively the amount of participants involved in the

debate.

It is also important to consider what happens to the workflow instance once the

workflow definition has been completed. In some cases we may want to restart

the workflow (whilst archiving the data from the workflow cycle that has just

been run). Alternatively, we may want to simply finish the workflow instance

and archive the whole workflow instance. Finally, we may want to restart the

10 A property here refers to some aspect of the state of the workflow. In the implementation instead of using
attributes to maintain state properties are used since they are more fundamentally relevant to constraints.
A property in this context is a key­value pair where the key can be any type of object.

49

workflow instance with the existing data in place.

As explained in section 4.3.3 it is also necessary for if-else branching in the

process based on preconditions. This means that different branches of

components need to be executed dependent on a condition. This will look like

this:

Fig 5.2 Component-based Workflow with Branching

It is important to note that this type of branching (in Fig 5.2) is distinct from the

more general type of branching in traditional activity-based workflow, which

allows representation of parallel task execution. The branching on the pre-

condition in VOOP is only used for XOR (exclusive OR) branching. Whereas

traditional workflow engines allow OR (inclusive OR branching), AND branching,

and a similar set of constraints for re-joining the workflow branches. Since each

of the components in VOOP facilitates multi-user concurrent interaction, this

type of branching for parallelisation of user/automated tasks will not be

necessary. It may however be necessary to add this in the future so that a

50

workflow instance can implement interfaces to multiple components in parallel.

5.2 Why NOT use an existing workflow engine

Most existing workflow engines are designed around a state-machine with

states which are user-tasks (or automated tasks), and transitions between

states on completion of a user-task. Tasks are normally distributed to the level

of detail of individual user-actions. This is known as activity-based workflow.

The components in VOOP are intended to facilitate higher-level activities which

are likely to be multi-user in character and define a type of interaction between

users (e.g. debate). Thus the detail in traditional workflow specifications is too

low-level for this purpose, and would therefore be too restrictive and expensive

to customise. Indeed, Shi, Lee and Kuruku [14] state that most process

automation today is achieved through standardisation to “best practice”

processes which can be costly to re-engineer.

Most attempts to create component-based workflow integrate traditional

activity-based workflow management systems with components11[23] by

considering the component as a task in the workflow definition. This approach

has the disadvantage that the specification of the workflow is not inherently

component-oriented. That is the specification language is not written in terms

of interfaces and configuration parameters for the corresponding components.

Thus the flexibility of component configuration is limited in this approach.

In addition implementation of this type of standard is complicated by having

two layers of abstraction rather than one. In the OMG Workflow Management

Facility [23] there is both a CORBA based component system and the

traditional activity-based workflow specification standard of the WFMC12 [24].

Integrating these two standards into an implementation seems unnecessarily

complicated when it is possible to have both systems in a single layer of

11 OMG integration of WFMC with CORBA to make Workflow Management Facility
12 Workflow Management Coalition (WFMC) – Workflow Reference Model

51

abstraction. Of course since CORBA is a distributed object system this has the

advantage of facilitating distributed components. However as we will see in

section 6.7 there are also possible solutions to the problem of distributed

component workflow in the VOOP architecture.

Fig. 5.3 Workflow System Characteristic (extract from Workflow

Management Facility V1.2)[23]

Figure 3.2 shows the archetypal activity-based workflow management system.

Note the separation between the layers: process definition, workflow

enactment service and the applications and IT Tools. The VOOP system is

designed in such a way that the workflow enactment layer and the application

52

layer are one single layer. In VOOP the workflow definition is specified directly

in terms of interfaces to components. Therefore the process definition directly

references the applications layer (in this case the components). In VOOP the

enactment layer for an instance consists only of the instance object which has

a workflow definition. On parsing the definition, the workflow instance acquires

the required behavior, by using the interface to find the corresponding

component (explained in section 5.3).

Some more innovative approaches to component-based workflow suggest

using an events-based programming model for communication between

components [25] . Zhuge [15] and Shi et al [14] have suggested developing

inherently component-based workflow systems, where the workflow definition

is written in terms of components. These approaches are related to the

approach taken in designing VOOP, and indeed indicate some of the possible

future extensions of VOOP. However, the free availability of any related

implementation to date, is currently not known by the author.

53

5.3 The VOOP Architecture

VOOP is a component-based workflow system as outlined in section 5.1. VOOP

consists of a number of key building blocks which are outlined below:

A Group is the fundamental context within which everything else exists.

A group may contain, and provides the context for:

1. Members which are users who have joined the group, or who created the

group.

2. Workflow types, which define the types of processes that can be

instantiated in the group.

3. Roles: Groups may have roles in the process types of other groups as well

as their own.

4. Workflow instances: Most types of workflow instances change aspects of

the group. Such process instances effectively modify their own context.

5. Sub-groups: A group may have other groups nested within it. In fact, the

only way of creating a group, is from within an existing group. The system of

groups is hierarchically structured, with a single seed group, within which

multiple sub-groups may be defined. The seed group is created when the

application is launched without any groups in the database.

54

Fig 5.3 Group Contents

A workflow type is a class which acts as a factory for workflow instances (it

produces workflow instances). In VOOP, a workflow type is configured with:

1. A workflow definition, which is an ordered list of interfaces. The interfaces

are augmented with constraints, and configurations parameters. Such

constraints and configurations are applied to the components corresponding

to the interface on which they are defined..

2. Roles, which are sets of permissions in a process type, which are assigned

to groups. Each method in an interface corresponds to a single permission

which can be assigned to any number of groups.

A workflow type creates workflow instances with the workflow definition and

the roles it is configured with (as seen in figure 5.4).

55

Fig 5.4 Workflow Type Instantiation

A workflow instance is a state container which represents the state of an

organisational process. There are no methods intrinsic to workflow instances

which operate on its state.

The only methods with which workflow instances are created, are those relating

to generic functions, such as parsing the workflow definition, and retrieving

the corresponding workflow components which implement the interfaces in the

workflow definition.

A special aspect of the state of a workflow instance is the interface(s) which it

currently implements. This corresponds to the current stage in the workflow

definition.

The workflow definition tells the workflow instance which interface is required

for the next higher-level activity. The system must ensure that the behaviour of

the interface is implemented by the workflow instance. This will require adding

56

the functionality of a component which implements the interface to the

workflow instance. For example, when a workflow is in the vote component, it

will provide a user-interface for voting, and the voting functionality will be

provided by the workflow instance through the vote component. When the

workflow has progressed, it is important that the functionality of this

component is no longer available. When a workflow instance progresses

through its workflow definition, it must acquire the necessary functionality to

provide (implement at run-time) the next interface. The methods which are

acquired act as the workflow instance's methods. Therefore they can affect its

state.

Fig 5.5 Acquiring Component Functionality

57

The acquisition of interface functionality has five stages as depicted in fig.5.5:

1. The workflow definition parser finds the next interface and passes it to the

Component Acquirer.

2. The Component Acquirer somehow (this is explained in the Implementation

chapter 6.1.3) finds a component with the necessary functionality (methods)

to implement the interface.

3. The component's functionality is added to the workflow instance.

4. The Component Acquirer sets up the new interface to the workflow instance.

5. The workflow instance now has the necessary functionality to implement the

new interface.

N.B This acquisition of functionality is achieved in the implementation through

a python specific programming concept known as component adaptation. This

is explained in the Implementation section.

Once a workflow instance has acquired the functionality of a workflow

component, users (with appropriate roles) may execute the methods of the

new interface, and thereby operate on the state of a workflow instance (or on

the state of the group which is the context in which the workflow exists).

When the workflow instance acquires a component, a constraint is set by the

workflow definition on the component. Constraints are checked against the

state (properties) of the workflow instance (and/or the state of the group). Once

a constraint is fulfilled the component functionality is removed, and a new

component is acquired.

58

A component method is any method added to a workflow instance through the

acquisition of a component. When a component method is executed it may

modify the state of the workflow instance. After a component method is

executed, the component checks whether its postcondition constraint is

satisfied by the workflow instance's state. Here the question is: “has the goal of

the higher-level activity been achieved?”. If the postcondition is satisfied by

the state of the workflow instance, then the workflow instance should execute a

transition which will involve changing its interface and therefore changing its

functionality. The subsequent interface is determined by parsing the process

definition. This process is depicted in fig. 5.6.

59

Fig 5.6 Checking Component Constraints

Precondition constraints may also be checked against the state of the workflow

instance. These are checked in order to create branches of the if-else type in

the process definition. Preconditions for branching in the workflow instance are

tested after a postcondition for the previous component has been satisfied (as

depicted in figure 5.2).

60

A role in a workflow type is a set of permissions projected onto the method

signatures of the interfaces in a workflow type definition. Each role in a

workflow type is associated with a group. There maybe multiple roles onto a

single process type.

A user may acquire a role by becoming a member of the group. Equally the

user may relinquish a role by leaving the group. A user can execute component

methods which are made available. Which methods are available to a workflow

instance is determined by a combination of the current interface of the

workflow instance, and the users roles relating to the workflow instance.

Fig 5.7 Roles and the User View

61

In fig. 5.7 the user is a member of groups X and Y. Both X and Y have roles

which correspond to sets of methods in the various interfaces in the workflow

type, W. The user acquires both of these roles since it is a member of both

groups. The combination of these roles give the user a view onto the workflow

type.

Of course at any one time there is only one interface to a workflow instance

available. So, if for example, a workflow instance, of type W, was in the stage

corresponding to Interface B, then since the user view contains methods 5 and

6 but not method 4, the user would see an interface where it could execute

methods 5 and 6 only.

62

6 Implementation

In Chapter 5, I outlined the overall architecture of the VOOP system. In this

chapter, I outline some key implementation decisions. I briefly describe the

tools which I used and why.

6.1 Choice of implementation language

The language in which VOOP will be implemented is Python. Below I highlight

some reasons why, as well as explaining some key language features which are

used in the VOOP implementation.

Python is a dynamically typed, interpreted, interactive, object-oriented

programming language. It is highly productive for many reasons amongst

which are:

1. There is no compilation step required in the development cycle;

2. It has some useful high-level built-in types such as lists and dictionaries;

3. It is very flexible, allowing easy combination of object-oriented and

functional styles of programming.

6.1.1 Checking Constraints using Metaclasses

Python has some useful features for modifying its own semantic structures. In

particular metaclasses are the factories which make classes. In most

programming languages, these are hidden from the programmer. In Python, by

modifying the metaclass from which a class is derived, we can modify the

behaviour of the class itself. In VOOP the workflow components checks the

postcondition after the execution of each workflow method. This is achieved by

63

modifying the metaclass of the component classes so that every time a a

method is executed on an instance of a component, the postcondition is also

checked.

Fig 6.1 Metaclasses, Classes, and Instances

6.1.2 Creating Workflow Definition Notation

The language libraries which are used by the python interpreter are available

from within Python, making it easy to construct new languages, including

declarative mini-languages. These are used in VOOP to create the constraint-

based workflow definition notation with which we define workflow types (see

chapter 7).

6.1.3 Concept of Adaptation in Python

Adaptation, is a programming construct which exists in Python largely due to

the pioneering work of Phillip J. Eby on the PyProtocols package [26].

Adaptation is used in VOOP to achieve the implementation of interfaces by

workflow instances, dynamically at run-time, as described in section 5.3. This is

64

the mechanism through which component functionality is added to the

workflow instance.

There are two slightly varying implementations of adaptation in Python, these

are: the PyProtocols package, Zope Interfaces. However both have some basic

conceptual aspects in common, and there is the suggestion that adaptation

should be included as a fundamental programming construct in Python [27].

An adapter changes the behaviour of an object so that it can implement an

interface which it might previously not have implemented. That is, an adapter

allows us to add functionality to an object at run-time.

During the process of adaptation the fundamental question we are asking is:

can I find a way of making X do Y? So we can ask the programming

environment to return a version of an object X which implements an interface

Y. Behind the scenes the object X is asked, "do you know how to wrap yourself

to provide this interface Y"? If the answer is no, the interface Y is asked, "does

the object X provide or implement you? Or do you know how to wrap it in order

to do so"

In practice, the most simple case of adaptation is: if an object of a particular

class, does not implement or provide an interface, it may be able to adapt to

that interface if it has a registered adapter for doing so.

6.2 Python-based Tools

65

There are a wide variety of high quality libraries available for Python. Apart

from using the standard libraries of Python this project has made use of two

well established Python projects. These are Twisted [28], and Zope [29]. Both

are highly componentised frameworks so it is possible to pick and choose

components and integrate them.

6.3 Authentication with Twisted Cred

The authentication mechanism in VOOP utilises the Twisted Cred package.

Cred separates the process of authentication into two constituent parts, the

credentials checker, and the realm (see figure 6.2). These components must be

built by the application programmer. When an identity is created in VOOP, it

adds a username and encrypted password to a file. When a request for login

occurs (in VOOP this will usually be over HTTP) the portal uses the credentials

checker, which is provided with the same encryption function (hash) and

password file, to find the associated avatar id (assuming there is one). An

avatar is a business logic object for a particular user, in other words it can be

considered to be the user object, or a user's view into the system. The portal

then takes the avatar id and sends it to a realm. The realm returns the avatar

to the Portal, which sends the avatar on to the user via the protocol (HTTP). In

the case of the VOOP implementation, the avatar is the web application

returned to a user logging into the site.

66

Fig 6.2 Authentication with Twisted Cred –

from [30]

67

6.4 Components, Interfaces and Adapters

6.4.1 Interfaces

An interface (in Python) is simply a class that:

1. Acts as a marker

2. Documents a group of methods.

In Zope Interfaces, which are used in VOOP, an interface is created by writing

a class and sub-classing the class “Interface” (as seen in figure 6.3).

from zope.interface import Interface

class IVote(Interface):
 def cast_vote(self, vote):
 “””Do you approve?
 “””

 def change_vote(self, new_vote):
 “””Change your Vote
 “””

 Fig 6.3 Zope Interfaces Example

Note that the methods in the interface do not have method bodies.

68

6.4.2 Components

Object-oriented programming allows programmers to reuse code through the

design pattern of inheritance. However multiple inheritance can become

difficult to manage. Component-based design increases usability of code

through the design pattern of delegation, and the object-oriented technique of

composition.

Twisted Components, is a module for creating components which is used in

VOOP

In VOOP workflow components can be declared to implement or provide

(implement at run-time) an interface. For instance, the component in figure 6.4

implements the interface specified in figure 6.3. The implementing component

must provide methods corresponding to all the method signatures in the

interface.

Class Vote_Component:

 implements(IVote)

 def def cast_vote(self, vote):

 #method body goes here

 def change_vote(self, new_vote):

 #method body goes here

Fig 6.4 Component Implements Interface

69

6.4.3 Adapters

Since the workflow instance will need to provide the behaviour required by the

“IVote” interface, the workflow instance will need to use the functionality of the

“Vote” component. Therefore we need to register the “Vote” component as an

adapter for workflow instances. To do this we use the Twisted components

registry as shown in figure 6.5.

from twisted.python import components

 components.registerAdapter(Workflow, Vote, IVote)

 Fig 6.5 Registering an Adapter

The adapter (Vote component) can then be used to adapt the workflow

instance to implement the interface IVote. We may then ask a workflow

instance to adapt to implement the interface like this:

workflow_instance = Workflow() #create a workflow instance

 IVote(workflow_instance) #then adapt the instance

 #to implement IVote

 Fig 6.6 Component Adaptation

When the code in figure 6.6 is executed, the interface looks for an adapter in

the adapter registry which will allow it to implement the interface “IVote”. If it

finds one, it constructs an instance of the “Vote” class, passing the workflow

instance to the constructor. The “Vote” class is said to wrap the workflow

instance. Now the workflow instance implements the “IVote” interface.

70

6.5 Web Templating Using Nevow

Nevow is a web templating system, which separates business logic and display

logic. The Nevow project is connected to the Twisted project, and Nevow is

dependent on the Twisted code base. Nevow integrates seamlessly with

twisted servers, providing a web-interface, to twisted applications. Nevow has a

number of modules which are used in VOOP.

6.5.1 Rendering Interfaces with Formless

Nevow's formless module allows us to expose interfaces method signatures to

the web. Formless automatically renders web forms and coerces typed input.

This is done by modifying interfaces and turning them into typed web-

interfaces. These typed interfaces validate and coerce string input, ensuring it

is of the correct type to call the methods. This allows us to dynamically

generate web-interfaces to workflow components. As shown in figure 6.6, this

is achieved by making minor modifying the Zope interfaces from figure 6.4.

There are two differences between the two interface definitions:

1. The interface subclasses a class called formless.annotate.TypedInterface

instead of zope.interface.Interface

2. The arguments in the method signature are typed – so that for example

the vote argument must be a boolean. Interface typing is useful in order

to expose Python methods to the web, since python is dynamically

typed, so otherwise the user could enter any type into functions which

were not intended to be used in that way.

71

from formless.annotate import TypedInterface, Boolean

class IVote(TypedInterface):
 def cast_vote(self, vote = annotate.Boolean()):
 “””Do you approve?
 “””

 def change_vote(self, new_vote = annotate.Boolean()):
 “””Change your Vote
 “””

 Fig 6.6 Typed User Interfaces

Once we have specified our interfaces in this way, its possible to expose the

interfaces to the client. The interface then acts as a user-interface.

6.5.2 STAN

STAN is a pure Python Document Object Model which is significantly “lighter”

then the W3C DOM. STAN documents consist of a XML tree structure built from

nested sequences of Python types. STAN generates XHTML. STAN allow

Python programmers to leave “hooks” at certain points in the document, in

order to permit subsequent manipulation.

6.5.3 LivePage

LivePage is an AJAX (Asynchronous Javascript over XML-HTTP) implementation.

This allows the browser to respond to server events without the refreshing the

whole page. When combined with the twisted events model on the server-side

this make an effective events model for web-application development. In

particular this makes the goal of real-time services in the browser possible. So

72

for instance web-based chat clients applications, need not poll the server for

new comments by refreshing the page, since events can be routed directly into

the browser.

6.6 Choice of Database

6.6.1 Why an object database?

The decision to use an object database, or more precisely a “persistent object

store” was taken mainly due to the heterogeneity of the objects which will be

persisted (stored) in the application. In particular a workflow instance may use

multiple different components during its life-cycle, which modify and add

attributes (properties) to it. This creates many possible combinations of

attributes (properties).

Since the process objects will have different attributes according to different

workflow definitions, using a relational database would be cumbersome. In SQL,

or any other relational database, all rows of a database table must contain a

set of attributes which are determined by the columns of the table. Since

process objects of each type may have different attributes, and those

attributes may be of different types, this would involve creating at a minimum

one table per process type. However due to the fact that individual process

objects will have different fields according to the branches that are taken in an

individual process, even this would lead to having some large tables in which

the majority of the fields are often empty. In short, relational databases is not

well suited to objects which are heterogeneous in their attributes.

Whilst having other drawbacks, object databases, make having objects with

heterogenous attributes very easy because object databases make objects

persistent by serialising them and storing the serialised version.

73

However, one major disadvantage of using an object database is that the

objects are queried and retrieved only by a single key through which they are

stored. Using SQL the data querying method is intrinsic to the DBMS. In object

databases, this is sometimes overcome by creating indexes of the objects

stored and then querying those indexes to retrieve the object ID before

querying the database for the object with that ID.

Another important feature of Object Databases, is that stored objects, are not

usually accessible by other languages since they are serialised versions of

objects in the programming language. They are also often created using a

serialiser which is usually language specific. This is clearly a potential problem,

if we are later likely to want to access the data from another language. This

could be solved by serialising the objects into an external data representation.

However there are advantages of having the data stored in the programming

language of the application. In particular, since querying the database is done

independently from storage, querying and indexing of data is done in the

language of the application programmer. This is seen by some as an

advantage, since the programmer need not learn or use, another language,

such as SQL, in order to understand or construct code relating to data retrieval.

6.6.2 Why ZODB?

ZODB (Zope Object Database) is probably the best established object database

written in Python. It was originally part of the Zope project, which is a web

applications development framework, and one of the biggest and best known

Python projects. As part of the release of Zope 3 many of the previously

monolithic parts of Zope have been modularised. Therefore now it is possible to

use ZODB, without using the rest of Zope.

ZODB has many advantages when compared to other object databases in

Python. These include:

74

1. Syntax doesn't interfere with application logic – it is very simple to

make the instances of a class persistent using ZODB. Simply sub-classing

the class “persistent” will have the desired effect.

class Process(persistent):

...

Fig 6.7 Making an Object Persistent in ZODB

ZODB also requires that transactions are committed by the application

programmer, and that if container data types (e.g. lists or mappings) are

used, that the application programmer sets the “dirty bit13” manually when

an element in the container is changed. The level to which committing

interferes with application code is dependent largely on the granularity of

transactions. However in the case of most web applications, a single web

request is usually considered a transaction, so it is possible to just commit at

the end of each request.

2. Scalability - ZODB can be scaled to support heavy loads, and many

objects. This is achieved through two main mechanisms. First, the

programmer can choose the type of data structure in which to store the

objects. So for instance, the programmer can choose to store objects in a

btree, which is highly efficient for querying (btrees are used in VOOP).

Second, through using ZEO (Zope Enterprise Objects), ZODB allows multiple

storage servers, and processes, to be integrated to provide a single

transactional object database for an application. Whilst this is not used in

VOOP, it is possible to add at a later date with virtually no modification to the

13Database terminology – when the data in the cache has been modified but not
written back to disk the “dirty bit” should be set.

75

application code.

6.7 The Potential for Distributed Services in VOOP

As mentioned in the specification, whilst no distributed services are to be

developed as part of this project, it is essential that VOOP is designed to

support easy extension with distributed services. So, for example, a group

which is on an instance of VOOP on one server may have a role in a workflow in

a group on another server. To the user, we would want this to be a seamless

process. So when the user navigates to the group it should appear to the user

as 'just another group'. There are two Twisted services which together make

such distributed services relatively trivial to achieve. These are twisted cred as

outlined in section 6.3 and perspective broker.

The use of twisted cred, and particularly the separation between the protocol

through which a request comes, and the portal, has a key advantage. A request

may be made from another server over a distributed object protocol (i.e. a

remote method invocation protocol), and can be returned via the same

protocol. By sending the avatar id in the request, we can get the same user

object as would be provided to the user. Alternatively, a service may login

instead of a user. For example, a node mapping service which maps the

relation between distributed groups which have roles in each others' workflow

types. Similarly customisable results can be returned according to the avatar

id of the service.

Perspective broker is a distributed object protocol and is part of the twisted set

of tools. Perspective broker, consists of serialisation and remote method

invocation. In order to invoke a method on a server, the client needs to have a

remote object reference. By logging in through twisted cred an avatar is

returned to the client. The avatar represents the user's abilities to do things on

76

the server. The avatar gives the client appropriate object references which

become the user's perspective. The perspective allows users logged into one

server to make method invocation on another server.

77

7 Constraint-based Workflow Definition
Notation

In Chapter 5 the concepts of a workflow type, a workflow type definition, and

roles relating to a workflow type, were introduced. It was explained that a

workflow definition and roles are constituent parts of the workflow type which

are transferred to the workflow instance on instantiation. The process of

execution of the interface and constraint constituent parts of a workflow

definition was also explained. This section describes in more detail how

workflow type definition, and role definition takes place in VOOP and elucidates

the syntax and features of the notation used.

7.1 Basic Workflow Definition

The syntax of the most basic statement in the workflow definition notation

looks like this:

 [Interface1 : post_condition1 | Interface2: post_condition2]

 Fig 7.1 Workflow Definition Syntax

The above workflow definition is all enclosed in square brackets, which means

that this is a single branch of a component-based workflow. The definition says

that a workflow instance of this type should provide the behaviour of Interface1

until post_condition1 is fulfilled. The pipe ('|') tells the workflow instance that

there is another stage to the workflow remaining, and that the workflow should

try to adapt to provide the behaviour of the next interface. The post-condition

constraint should be set on a property which some aspect of the corresponding

78

component can modify. Once this constraint is satisfied the workflow instance

moves to the next interface. The most basic building block of a constraint is a

statement about the value of a property. This takes the form:

 property1 == value1

Fig 7.2 Atomic Constraint Syntax

The “==” operator can be replaced with any standard inequality operator

(“>=”, “<=”, “>”, “<”). In addition composite constraints can be built by

stringing together these atomic constraints with boolean operators OR and

AND.

 property1 == value1 OR property2 == value2

Fig 7.3 Composite Constraint Syntax

79

7.2. Branching on Preconditions

Preconditions are used for choosing branches of the workflow based on the

state of a workflow instance at the point of testing the precondition.

 [Interface1 : post_condition1 | Interface2: post_condition2]

 if{pre_condition}­>[Inteface3 : post_condition 3]

 else­>[Inteface4 : post_condition 4]

Fig 7.4 Branching Workflow Syntax

In the above definition, each branch is enclosed in square brackets. Once the

first branch is complete, the process will come to the if statement. The

precondition is enclosed in curly brackets (“{}”). If the precondition holds, then

the branch containing Inteface3 is executed. Otherwise the branch containing

Interface4 is executed.

7.3 Component Configuration

In a workflow definition an interface represents a stage in the process. The

workflow instance provides the interface at a particular stage using a

component. We can configure components to behave differently to some

degree using the post-condition constraint. So, for instance if the interface is

IVote and the constraint is “percentage of members who have voted must be

greater than 60%”, then the IVote component will behave differently to if the

constraint was “time is after 10pm on 9th September 2005”. However there are

some other aspects of the operation of a Vote component which we may want

to configure differently in different workflow types. For instance, we may want

80

to configure the “Vote” component to do “rating 1 to 10” rather than “yes or

no” vote. Therefore there is a mechanism to pass configuration parameters to

the workflow component from the workflow definition.

IVote<vote_type =['yes', 'no']> : percent_voted>=40

Fig 7.4 Component Configuration Syntax

In the above case we pass a list of option values to the vote component. In this

case the list of options are 'yes' or 'no', however we may choose instead to

pass any list of options, for example: [1, 2, 3, 4, 5], would create a rate 1 to 5

interface.

7.4 Role Creation

The role definition notation takes advantage of two Python built-in types – the

dictionary, and the list. A dictionary is a mapping of key-value pairs indicated

by curly brackets (“{}”). In this case the key is the name of the group, and the

value is a list of methods available. A role definition is part of the workflow type

and thus the same role definition applies to every workflow instance.

{group1:[method1, method2],

 group2:[method2, method3]}

Fig 7.5 Role Definition Syntax

81

In the above role definition, any member of group1 would have the necessary

permissions to executed method1 and method2, while members of group2

would have permissions to execute method2 and method3. However, at any

particular time, only those methods which are in the interface currently

provided by the workflow can be executed.

7.5 User Interface Issues

This notation whilst basic in its current form could evolve into something quite

powerful. However the challenge, more than making the notation more

expressive is to present it to users in a form which is easy to understand. This

is very important to the project, since it is not expected that groups will be

created only by those with technical abilities.

The long-term goal is to have a drag-and-drop user-interface, in which workflow

definitions can be composed intuitively and visually. The user would need to be

prompted for each step. Some forms of “intelligent” prompting could also be

added quite easily. For instance, if component A is dependent on component

B, component A should not be available in a workflow definition composer until

after an interface to component B has been specified.

Unfortunately there has been insufficient time to develop this in the initial

implementation. However, the VOOP system does allow users to construct

workflow definitions, as well as define roles, using a web user-interface with

drop-down boxes (see the Evaluation chapter).

82

8 Evaluation and Testing

8.1 Testing the application

In this section I outline the workings of the user-interface as currently

implemented, with some screen-shots for illustration.

Figure 8.1 is a group home page as seen by a user who is not a member of this

group. In fact, this is the Open Coop seed group, however it has the same

layout and functions as other groups. On the left are the members of this

group.

Fig. 8.1 A group page as seen by a non-member

83

A user can browse to each user page by clicking on the image links. Similarly,

the user can navigate the group tree by clicking on the image links on the

right. Unsurprisingly, sub-groups, are contained within the current group. and

the super-group is the parent of the current group. Figure 8.1 also shows a

check box for joining the group. When this is submitted it creates a new

process which will constitute an apply component and an approve component

(it could contain extra components too e.g. Vote). Once (if) the approve

component is completed, the user who applied will become a member of the

group and will appear in the left hand column.

Fig. 8.2 A group page as seen by a member

In, figure 8.2 the user has joined the group, and hence does not see the join

84

process but rather an interface (form) to create instances of each of the

process types which he has the roles necessary to create. In this case, the user

has the ability to begin a process to either, “create a sub-group” of this group,

or “create a new type of process” for this group.

Fig. 8.3 A User Page

Figure 8.3 shows the layout of a user page. Users will be able to view the

profiles of all other users. When, as in this case, the user is looking at his own

page he will also see the button to edit his user details. This profile is flexible

and can contain any number of different fields.

In figure 8.4 we see, for the first time the layout of a process in VOOP. The

85

process has components which are displayed in tabs from left to right,

corresponding to the order they appear in the workflow definition. In this figure,

we see that the current component is “workflow definition”. Inside the active

tab is the data corresponding to the current component. The tabs before the

current one will also contain data which is derived from their prior execution in

the process instance.

At the bottom of the process instance page, is the user-interface to the current

component. In the case of figure 8.4 we are in the “workflow definition”

component and have already added an interface for creating a proposal to the

new process type we are constructing. As can be seen, we are now considering

adding a debate component and a corresponding constraint. When the

workflow definition is complete we will check and submit the “Finished ” check

box.

Fig. 8.4 A process for creating a new process type

86

Once the “Finished” button is submitted, a constraint will be satisfied

(definition_finished = = True), and the workflow instance will move on to the

Add Roles component.

Fig. 8.5 An interactive component in a process (the debate component)

Finally, in figure 8.5 we have another process type. This process contains only

the components propose and debate. This figure illustrates a component which

is designed to be multi-user in character. A proposal, has already been

submitted, the text of which can be seen by “clicking” the “Propose” tab. In the

debate component, users can discuss the proposal which have been made. By

adding a comment in the debate form at the bottom, a user can contribute to

the debate.

87

8.2 Achievements and Limitations

During this project, I have designed and created an application which provides

a framework for specifying and enacting organisational governance processes

using component-based workflow. I have created an innovative mechanism for

enacting workflow instances using the mechanism of component adaptation. I

have also created a basic notation for specifying component-constraint based

workflow types.

In the system It is possible to form groups, representing virtual organisations,

and govern them in the framework. Since its possible to create process types

that create new process types, such organisational governance mechanisms

can be dynamically evolved. Further the permissions relating to members of

any particular group can be dynamically evolved over time, as new process

types are created.

However, the VOOP system, in its current state, is limited in a number of ways

including:

1. While the components built are sufficient to demonstrate the overall

architecture of the system, and its potential, they are currently quite limited in

their functionality and user-interface integration. This is largely due to time

constraints and the large number of components required to demonstrate

governance effectively.

2. The components for creating new process types, and assigning roles in

them, are currently too complicated and technical for a user to understand

how to use, without some training. They are also currently unable to create

some of the types of workflow definition which are possible in the notation.

Again this is largely due to time limitations. If the VOOP system is to meet the

goal of evolvable governance of virtual organisations, it will be necessary for

this interface to be much clearer and simpler to use.

88

8.3 Possible Usage

8.3.1 Groups, Trust, and Experimentation with Processes

VOOP is not yet developed enough to allow normal users to form and

dynamically govern virtual organisations. However this is mainly due to

limitation of the user-interface for creating processes. While the long-term goal

of VOOP is to make this possible, there are possible uses of the platform in its

current state. It is the view of the author that the best way to further develop

VOOP, is in close collaboration with a number of trained users, who understand

the process specification language. Those users could use the platform to

experiment with forming organisations and developing governance processes.

In other words, VOOP could be used a platform for experimenting with the

effects of different types of governance processes, on organisational

development. Keser [31] has suggested that virtual organisation research could

benefit from an experimental economics laboratory to examine certain design

issues for trust and reputation. This has been referred to as a “collaboratory”.

Since the area of the effects of governance processes on the development of

virtual organisations is similarly poorly understood, VOOP could be considered

in a similar vein a “collaboratory” for experimenting with governance

processes.

Experimenting with the effects of creating seed groups as well as sub-groups

with different governance processes is expected to yield results of great

interest for the academic pursuit of understanding the dynamics of virtual

organisations.

This project does not explicitly deal with the issues of trust and reputation in

virtual organisations, though it could be extended to do so. However issues of

trust are to some extent implicitly dealt with through the mechanics of group

membership. Since each group is able to define the process through which

membership is attained, and groups have roles in the processes of other

groups, a certain level of trust will be conferred on users on the basis of their

89

membership of a group. VOOP could potentially also be extended to include

explicit trust mechanisms. However, this would require extensions to the

ontological framework of VOOP.

.

8.3.2 Dynamics of Groups

The types of processes available in the seed group, as well as the roles in those

processes will have significant implications for how the system of groups can

evolve. For example, if there is no process for creating sub-groups of the seed

group, there will never be any more groups. Perhaps a more interesting

example, the seed group may or may not have a type of process which

facilitates the creation of new types of processes. If it does not, then the seed

group will be “stuck” with the types of processes it is created with for the rest

of its existence. This can be an advantage if the group wants to be relatively

politically neutral. For example the seed group in the initial deployment of

VOOP will act as a “container” for creating new groups. However a

disadvantage might be that the seed group will be less dynamic, so for

instance it would not be possible for the members to change the process of

creating sub-groups at a later date. Creating the seed group with a type of

process which creates new types of processes will allow it to evolve more

flexibly, but will make it into a much more politically-driven entity.

Particular issues occur when creating sub-groups, if a sub-group represents a

role within an organisation, such as Consumers or Agents in the Open Food

Coop example. In this case, the organisation will define the types of processes

initially available to the sub-group and whether or not the group can evolve its

own new process types. However it is likely that in some situations, the

organisation will want to retain the ability to add extra process types to the

sub-group. Here the question is of the relative autonomy of sub-groups. This

issue has not yet been properly addressed in VOOP. The question on an

organisational level, “do we give a sub-group the ability to evolve its own

90

processes?” is decided on creation of the group. However in a hierarchical

organisational form, it is common that a group cannot create new processes for

itself, but its super-group can. This is not yet possible in VOOP but would

require only minor modifications to make possible.

91

8.4 Future Developments and Research

Since this project is for the Open Coop it will not end with the completion of this

paper. Rather, it is hoped that this is the first step in a much more ambitious

project.

As already noted, VOOP will need much improvement in its user-interface in

order to make the process of governance of virtual organisations

understandable to the end-user. However it is not yet known what will be

necessary in order to make component-based composition of processes

understandable to end-users [14].

Component-based workflow, where the workflow is specified in terms of

interfaces and constraints, seems to have some promise. During this project,

the author, has experienced firsthand the amount of work involved in creating

individual components capable of facilitating governance activities. In order to

draw in more resources from the Open Source community it would be a

sensible next step to create an API14 for third-parties to develop their own

components. This would both simplify and standardise the process of

developing components, making it possible to create a distributed effort to

develop suitable components. A repository of components could then be kept,

allowing users and groups to pick and choose from available components.

As explained in section 6.7, VOOP has an architecture which can quite easily be

extended to create a distributed system, using the Twisted modules,

Perspective Broker and Twisted Cred. Creating a seamless user-interface to

groups hosted on multiple servers is a necessary development for scalability of

the system.

One additional feature, the need for which has been requested of the author

numerous times during this project, is the ability to visually map the relation

14 Application Programming Interface

92

between groups. This could be done in a distributed fashion with a mapping

service as briefly mentioned in section 6.7.

Finally, VOOP could benefit significantly from a richer semantic framework, on

which to base constraints. Currently VOOP sets constraints against properties,

which constitute key-value pairs. The same properties are modified by the

component. While this has some mileage as an approach, the system would be

much more powerful (and arguably more understandable to the user) if there

were more advanced ontologies available to the constraints and components.

The simplest implementation of this might include an RDF15 framework of

“triplets”. However there are many, more advanced, and interesting

ontological frameworks currently under development. In this way VOOP could

contribute to the growing research area of ontology-extended workflow [32].

15 Resource Description Framework

93

8.5 Conclusion

There are many complex issues surrounding the governance of virtual

organisations. The issues are complicated by the need to form organisations in

the virtual realm, and the consequent need for dynamic evolution of

governance. Analysis of governance in terms of processes seems to be a

promising approach and consequently workflow is the appropriate technology

with which to approach the problem from a technical perspective. Due to the

interactive nature of most governance activities, component-based workflow is

the most appropriate type of workflow. However the field of component-based

workflow is still relatively young and is currently evolving very quickly. A great

deal of research is still required if we are to meet the goal of workflow

components which can be understood and composed into processes by a

normal user. As outlined in the previous section there are many avenues for

further development. The VOOP project will be taken forward by the Open Coop

and will continue to evolve and improve.

94

9 References

[1] N. Szabo, “Formalizing and Securing Relationships on Public Networks,” in

First Monday, Peer Reviewed Journal on the Internet, [online] Vol.2 No.9 -

September 1 1997.

http://www.firstmonday.org/issues/issue2_9/szabo/index.html (Accessed 25

July 2005)

[2] J. Davies-Coates, “Open Organisations,”(Open Coop), [online] 2002,

http://open.coop/open+organisation (Accessed 21 June 2005)

[3] The Open Organizations Project, [online] 2004,
http://www.open-organizations.org / (Accessed 1 June 2005)

[4] International Cooperative Alliance, [online] 2003,
http:// www.ica.coop (Accessed 23 June 2005)

[5] D2 ID 7.1.1 State-of-the-art evaluation, Trust Com (EU 2004) TrustCom,

Sixth Framework Programme, Networked Businesses and Governments,

INTEGRATED PROJECT, EU, P40-42, P438-454 [online] (April 2004)

http://www.eu-trustcom.com/index.php?page=Documentation (Accessed 8 July

2005)

[6] Bultje, René, van Wijk, Jacoliene: Taxonomy of Virtual Organisations, based

on definitions, characteristics and typology., in: VoNet: The Newsletter [online]

Vol. 2 (3) p. 9 1998

 http://www.virtual-organization.net/ (Accessed 1 July 2005)

[7] C. Handy, “Trust and the Virtual Organization,” Harvard Business Review.

73 (3). May-June 1995

95

[8] L.M. Camarinha-Matos and A. Abreu, “Towards a foundation for virtual

organizations,” in Proceedings of Business Excellence 2003 – 1st Int.

Conference on Performance measures, Benchmarking, and Best Practices in

New Economy, Guimarães, Portugal, 10-13 Jun 2003.

[9] K. Crowston and J.E. Short, Understanding processes in organizations.

Unpublished manuscript., [online] (1998)

http://crowston.syr.edu/papers/understanding-processes.pdf (Accessed July 18

2005)

[10] L. B. Mohr, Explaining Organizational Behavior: The Limits and Possibilities

of Theory and Research. San Francisco: Jossey-Bass, 1982.

[11] S.-L.Keoh, E. Lupu and M. Sloman, “PEACE : A Policy-based Establishment

of Ad-hoc Communities,” in the Proceedings of the 20th Annual Computer

Security Applications Conference (ACSAC), Tucson, Arizona, USA, © IEEE

Computer Society, pages 386 - 395, December 6 - 10, 2004.

http://www.acsac.org/2004/papers/76.pdf (Accessed 19 July 2005)

[12] H. J. Harrington, Business Process Improvement: The Breakthrough

Strategy for Total Quality, Productivity, and Competitiveness. New York:

McGraw-Hill, 1991.

[13] T.H. Davenport, & J.E. Short, “The new industrial engineering: Information

technology and business process redesign,” Sloan Management Review, 31(4):

11-27, 1990

[14] J. Shi, D. Lee, and E. Kuruku, "Task-Based Modeling Method for Business

Process Automation." submitted to ASCE Journal of Construction Engineering

and Management (2004)

96

[15] Zhuge, “Component-based workflow systems development Source”,

Decision Support Systems, Volume 35 , Issue 4, July 2003. Pages: 517 - 53

[16] P. Soffer and Y. Wand, "Goal-driven Analysis of Process Model Validity",

Advanced Information Systems Engineering (CAiSE'04) (LNCS 3084), p. 521-

535, 2004

[17] R.M. Cyert, & J.G. March, J. G., A Behavioral Theory of the Firm. New

Jersey: Prentice-Hall, 1963

[18] H. A. Simon, “On the concept of organizational goal,” Administrative

Sciences Quarterly, 9(1):1-22, 1964

[19] K. Crowston and J. Howison, “The social structure of Free and Open Source

software development,” First Monday, [online] volume 10, number 2 (February

2005),

http://firstmonday.org/issues/issue10_2/crowston/index.html (Accessed 1

August 2005)

[20] A. Cox, "Cathedrals, Bazaars and the Town Council," Slashdot (13

October) 1998

http://slashdot.org/features/98/10/13/1423253.shtml (Accessed 24 October

2004

[21] C. Gacek, T. Lawrie, and B, Arief, “ The Many Meanings of open source,”

Technical Report 1, DIRC – Interdisciplinary Research Collaboration in

Dependability, 2001.

http://www.dirc.org.uk/publications/techreports/papers/1.pdf (Accessed 24

October 2004)

[22] A. Mockus, R. Fielding, and J. Herbsleb, "Two Case Studies Of Open

Source Software Development: Apache And Mozilla," ACM Transactions on

Software Engineering and Methodology, volume 11, number 3, pp. 309–346.

2002

97

[23] Workflow Management Facility V1.2, Object Management Group. [online]

2000

 http://www.omg.org/docs/formal/00-05-02.pdf (Accessed 4 July 2005)

[24] WFMC Workflow Reference Model, Workflow Management Coalition.

[online] 1995

http://www.wfmc.org/standards/docs/tc003v11.pdf (Accessed 31 June 2005)

[25] P. J. Kammer, “Building the Process: Component Based Workflow

Architectures in a Distributed World”, CSCW 2000 Workshop: Beyond Workflow

Management: Supporting Dynamic Organizational Process, Philadelphia, PA,

December, 2000.

[26] PyProtocols, Python Enterprise Application Toolkit. [online] 2003

http://peak.telecommunity.com/PyProtocols.html (Accessed 22 July 2005)

[27] Python Enhancement Proposal 246, Python. [online] 2001

http://www.python.org/peps/pep-0246.html (Accessed 25 July 2005)

[28] Twisted, Twisted Matrix Laboratories. [online] 2005

http://twistedmatrix.com/ (Accessed 10 July 2005)

[29] Zope, Zope Community. [online] 2005

 http://www.zope.org/ (Accessed 12 July 2005)

[30] Twisted Cred how-to, Twisted Matrix Laboratories. [online] 2005

http://twistedmatrix.com/projects/core/documentation/howto/cred.html

[31] Keser, C., 2000, Strategically planned behavior in public goods

experiments, Working Paper, CIRANO, Scientific Series 2000s-35.

98

[32] Pathak, J., Caragea, D., and Honavar, V. (2004). Ontology-Extended

Component-Based Workflows: A Framework for Constructing Complex

Workflows from Semantically Heterogeneous Software Components. In:

Proceedings of the Workshop on Semantic Web and Databases (SWDB-04).

Springer-Verlag Lecture Notes in Computer Science. In press.

99

