Energy Beyond Oil

ENERGY BEYOND OIL

UK Peak Energy Tour March 2007

PAUL MOBBS

http://www.fraw.org.uk/tour/

An illustration of the problem...

Source: NASA

An illustration of the problem...

Source: NASA

Fundamental Forces

All forms of energy are based upon one of four "fundamental forces"

The rules:

- Energy and matter are constant (Law of Conservation)
- The activity within any system is proportional to the energy flowing through it (*First Law of Thermodynamics*)
- Energy only flows "downhill" once utilised it takes more energy to restore its "quality" to its original state (Second Law of Th.)

Global Energy Inputs

Climate cycles (wind/currents) 2,500,000EJ (46%) Solar input, 5,400,000EJ per year

Moon's gravity (creates tides) 94EJ per year

Reflected to space, 1,600,000EJ (30%)

Hydrological cycle (evaporating water) 1,300,000EJ (24%)

Source: Open University

The Scale of Human Energy Use

BP/Open University

Globally Traded Energy, 2005

Total	442
Hydro	28
Nuclear	26
Coal	123
Natural Gas	104
Oil	161
<u>Consumption:</u>	EJ

Source: BP

Natural Gas 24%

Energy and Inequality, 2005

UK Primary Energy Supply, 1970-2005

Source:

Digest of UK Energy Statistics 2006, DTI

UK Energy and Carbon Flowchart, 2005

UK Oil and Gas Production

Change in Imports

Source: UK Joint Energy Security of Supply (JESS) Committee

What's Renewable?

Wind

Hydro

Solar PV

Thermal solar

UK "Renewable" Energy, 2005

Does Renewable Energy Matter?

Digest of UK Energy Statistics 2005, DTI

RCEP/Hadley Centre

How Much Carbon?

How Much Carbon?

How Much Carbon?

The Real Problem...

"In 2004, carbon dioxide emissions were 4 per cent below their 1990 level and latest projections show that carbon emissions will be 14 per cent below 1990 levels by 2010. Carbon emissions per unit of UK output fell 31 per cent between 1990 and 2004, but this improvement was largely offset by a 39 per cent increase in the size of the economy.

Energy – Its Impact on the Environment and Society 2005 Department of Trade and Industry 2005

In short, the problem is the growth in consumption, not carbon

Conventional Oil Production

Campbell & Laherrere 1998

Hubbert's Peak

OIL AND GAS LIQUIDS 2004 Scenario

What About Coal?

A. UK 'economic' coal reserves ≡ 1,500 million tonnes

B. UK coal consumption \equiv 58 million tonnes/year

Lifetime of reserves at current consumption (A / B): **26 years**

C. Coal required to provide 30% of the primary energy supply (ignoring inefficiency of conversion) \equiv 111 million tonnes/year

Lifetime of UK reserves at @ 30% of primary supply (A/C): **13.5 years**

Source: IEA/OECD-NEA/WNA

Flux: The Limitation on Energy

solar thermal/ solar PV

flux = sunlight

swept area x efficiency x flow rate x density

wind/ tidal stream flux = wind/water flow

'head' height x efficiency x flow rate hydro/ tidal impounds flux = water flow crop yield Χ efficiency Χ area/year biomass

flux = crop yield/area

 A. Net energy produced from one hectare (2.5 acres) of intensively produced short rotation coppice, less power generation losses ≡ 5MWh/year

B. UK power generation in 2003 ≡ 400,000,000MWh

C. UK land area ≡ 24,290,000 hectares

Number of UK's required to provide just the UK's electrical power (one-fifth of total energy consumption) from biomass ([B / A] / C): **3.3**

Biofuels

Solar radiation, 100% 36,000GJ/ha/year Absorbed by crop, 5% 1,836GJ/ha/year Biodiesel produced, 0.1% 41GJ/ha/year 10,500 miles travelled/year Source: DEFRA

A. Amount of land, producing intensively grown oilseeds for rapeseed methyl ester, required to fuel one average (9,000 miles per year) car for one year ≡ 0.85 hectares.

B. Number of cars on the UK's roads \equiv 30,000,000

C. UK land area ≡ 24,290,000 hectares

Number of UK's required to provide biodiesel for the car fleet ([A x B] / C): **1.0**

Energy and Transport

Cutting the use of cars by 60% and moving demand to buses/trains *only cuts the energy consumption in road passenger transport by* 26%

Source: BP/IEA

How Long Will It All Last?

	"Proven/		Equivalent	Consumption	
	probable"	Annual	value of	EJ/year	R/P ratio,
Resource	resource	consumption	resource	(2005)	years
Oil (conventional)	1,201	30 billion barrels	6,856	172	40
Natural gas	179,850	2,750 billion cu.m.	6,777	104	65
Coal	909,100	5,853 million tonnes	19,370	123	158
Nuclear (uranium)	4,000	64 kilo-tonnes	1,632	26	63
Total (all resources)			34,634	424	82

The Simple Solution...

Why not just HAVE LESS?

The Likely Future

We don't need to produce more energy, we need to use less!

- Petroleum will become very expensive within 10 years and will be in short supply within 20.
- Gas will become expensive. Just as more people are switching to gas, this too will begin to run short around 2030.
- Coal creates problems because of climate change, and nuclear has problems because the uranium won't last long.
- Renewables can't fill the gap wind needs back-up/storage, biomass needs massive land area that it would affect agriculture, and other options have a low power density.

In short, renewables might supply 30% to 40% of the UK's current energy use. That means cutting use by 60% to 70% over 60 to 70 years.

Domestic Energy Use

So, if standby devices

Some Quick Ideas...

• Get out of debt!

- Cutting energy use 50% of domestic consumption is space heating, and 25% water heating (low energy light bulbs won't solve the problem *only saves about 4.5%!*).
- Energy reduction becomes more difficult to achieve the more you cut, so it's actually easier to look at on-site energy production (micro-generation) to offset consumption.
- Solar systems can reduce hot water demand by 50%, but for larger savings you'll need to do some major engineering on the house and install a solar roof and heat store – note that a thermal system is more productive (and cheaper) than PV
- You need to tackle your use of commodities the easiest way of doing this is gardening to produce food, and developing local networks to supply other goods from within the area.
- You need to set yourself up to travel less within 10 to 15 years.

Finally, read the book!

ENERGY BEYOND OIL

PAUL MOBBS

Published by Matador Books, distributed by Troubador.

ISBN 1-905237-006, £15.99

Only £10 if you buy now!

Order online at http://www.troubador.co.uk/

See the Energy Beyond Oil Project web site for more information on recent developments and to download our free information – http://www.fraw.org.uk/ebo/