
Open Source: Open for Business

O
pen

So
urce: O

pen
fo

r B
usiness

T H E L E A D I N G E D G E F O R U M P R E S E N T S :

T
H

E
 L

E
A

D
IN

G
E

D
G

E
 F

O
R

U
M

 P
R

E
S

E
N

T
S

:

LEF09/3cover.qxd 9/3/04 1:18 PM Page 1

http://www.csc.com

PAUL GUSTAFSON
Director, Leading Edge Forum, and Senior Partner,

CSC Consulting Group

Paul Gustafson is an accomplished technologist and

proven leader in emerging technologies, applied

research and strategy. As director of the Leading Edge

Forum, Paul brings vision and leadership to a portfolio

of programs that make up the LEF and directs the

technology research agenda. Astute at recognizing

technology trends, how they inter-relate, and their

implications for business, Paul brings his insights

to bear on client strategy, CSC research, leadership

development and innovation strategy. He has published

numerous papers and articles on strategic technology

issues and speaks to executive audiences frequently

on these topics.

pgustafs@csc.com

WILLIAM KOFF
Vice President, Leading Edge Forum

Bill Koff is a leader in CSC’s technology community.

He chairs the Leading Edge Forum executive committee,

whose members are the chief technologists from each

of CSC’s business units. Bill plays a key role in guiding

CSC research, innovation, technology thought leader-

ship and alliance partner activities, and in certifying

CSC’s Centers of Excellence. He advises CSC and its

clients on critical information technology trends,

technology innovation and strategic investments

in leading edge technology. A frequent speaker on

technology, architecture and management issues, Bill’s

particular areas of interest are system architecture,

digital disruptions and the open source movement.

wkoff@csc.com

ABOUT THE LEF DIRECTORS

CSC’s Leading Edge Forum is a global thought leadership

program that examines the technology trends and issues

affecting us today and those that will impact us in the

future. As part of the CSC Office of Innovation, the LEF

explores emerging technologies through sponsored inno-

vation and grants programs, applied research, awards

for the most innovative client solutions, and alliances with

research labs. The LEF examines technology marketplace

trends and best practices, and stimulates innovation and

collaboration among CSC, our clients and our alliance

partners.

In this ongoing series of reports about technology directions,

the LEF looks at the role of innovation in the marketplace

both now and in the years to come. By studying technology’s

current realities and anticipating its future shape, these

reports provide organizations with the necessary balance

between tactical decision making and strategic planning.

LEF09/3cover.qxd 9/3/04 1:18 PM Page 2

mailto:pgustafs@csc.com
mailto:wkoff@csc.com
http://www.csc.com/aboutus/lef/index.shtml

2 GET TING DOWN TO BUSINESS

6 TREASURE CHEST: TECHNOLOGY TRENDS

6 Culture of Community:

The heart and soul of open source is community.

11 Moving Up the Stack:

Open source is not just Linux.

23 Mission Critical:

Open source is industrial strength.

31 Sweet Spot:

Open source yields targeted savings.

44 Software Revolution:

Open source accelerates development and

incubates new ideas.

74 LEGAL AND BUSINESS ISSUES

84 GET TING STARTED

87 APPENDIX: HANDY WEB SITES

91 ACKNOWLEDGMENTS

Open Source: Open for Business

49 At Your Service:

Service opens up new business opportunities.

55 Invisible Man:

Open source is all around us.

60 Market Force:

Open source increases competition, challenging

established market powers.

65 New Domains:

Open source lives in many domains.

69 Fun Factor:

Open source gets your creative juices flowing.

C O N T E N T S

Something disruptive is happening when:

organizations operate on the premise of

paying $0 for new software infrastructure,

demanding justification for any purchase

costs above that

a global software development community

over 800,000 strong challenges the leading

software vendors like no competitor can

organizations achieve time-to-market, inno-

vation and product quality like never before

commodity computing platforms bring sig-

nificant price-performance benefits to more

and more organizations, defying proprietary

approaches

organizations eye the methodology of the

global development community to improve

their own way of developing software

governments around the world issue direc-

tives steering away from proprietary software

software vendors are forced to prove their

case.

That disruption is open source, the software

development model made popular by the

Linux operating system. With Linux as the

star, there is a rich cast of open source software

available today for Web servers, application

servers, databases, content management, office

systems, browsers, development tools, security

and more. Open source brings about the

reorganization of millions of software devel-

opers into global collaborative communities,

amassing a strength orders of magnitude

greater than what is possible in the proprietary

software realm.

Organizations of all kinds are consciously

adopting open source software for critical busi-

ness needs: Deutsche Börse Group, Deutsche

Bank, the Danish government, BlueScope

Steel, NASA, the Associated Press, JPMorgan

Chase and Google, to name a few. There

have been many government initiatives

around open source software, as governments

in Brazil, China, India, Korea, Japan, Europe,

2

G E T T I N G D O W N TO BUS I N E S S

Australia and the United States, as well as the

United Nations, consider open source policy

and options. And large information technol-

ogy vendors such as IBM, Intel, Hewlett-

Packard, Oracle, SAP, Sun Microsystems and

Dell are supporting open source.

The lure of open source software is that it is

“free” in the sense that anyone can use it,

modify it, create derived works from it, and

redistribute it – and there are no license fees.

You have access to a worldwide development

community that improves, adapts and fixes

the software, often much faster than in the

proprietary vendor world. You are not

beholden to a vendor for fixes and enhance-

ments; there is no vendor product lock-in.

At the same time, open source software is not

a silver bullet; it is not inherently good just

because it is open source. Open source soft-

ware is not appropriate for every situation;

it will not displace proprietary software

overnight. There is plenty of good proprietary

software on the market, which can and should

be deployed. Interestingly, though, the lines

are blurring between proprietary and open

source as software vendors begin recognizing

and applying open source software in their

products and services.

In the end, organizations need to focus on

the software that best fits the business case.

That is why open source needs to be on the

business radar screen. Open source has

become a viable IT option that is growing

stronger by the day. Issuing a wake-up call,

CIO Magazine has asserted, “CIOs who don’t

come to terms with this [open source] revo-

lution in 2003 will be paying too much for IT

in 2004.”1 Gartner has stated that companies

will be considering open source options for

30 percent of new systems through 2004.2

Open source is open for business.

UNLEASHING IDEAS AND

INNOVATION

Open access and collaboration are at the core

of the open source movement. If information

and ideas “want to be free,” the Internet is

3

…the Internet is the key

enabler propelling the

open source movement

and the free flow of ideas

in the 21st century.

the key enabler propelling the open source

movement and the free flow of ideas in the

21st century. Open source is a philosophy

of idea generation and development that

challenges many business basics: how we do

business (R&D that is not proprietary), the

fundamentals of intellectual property (copy-

rights that are less restrictive), and the nature

of software development (from closed to open,

from proprietary to participatory).

The open and collaborative nature of open

source fuels innovation. In the Harvard

Business Review article “Breaking Out of

the Innovation Box,” John Wolpert of IBM

contends that innovation is spurred by an

open, rather than insular, process: “Initiatives

must gain access to and leverage from the

insights, capabilities, and support of other

companies without compromising legitimate

corporate secrets.”3 By tapping a worldwide

development community that knows no

corporate boundaries, and sharing that

expertise, the open source movement breeds

innovation, be it for corrections, enhance-

ments to existing functionality, or new

functionality.

Vendor repercussions are being felt, from the

SCO Group’s lawsuits alleging Linux infringes

on SCO’s intellectual property rights to the

Microsoft-Sun accord that some say can be

partially linked to open source and the need

to present a united vendor front. In his book

The Business and Economics of Linux and

Open Source, Martin Fink likens the impact

of open source on the software industry to

the impact of generic drugs on the pharma-

ceuticals industry. The emphasis is on

commoditization and lower prices, resulting

in wider access for consumers and increased

competition for vendors.

Indeed, open source places the scarce

resource of software into everybody’s hands,

the way the Gutenberg press placed the scarce

resource of texts into everybody’s hands.

The open, collaborative approach levels the

playing field, enabling anyone to contribute

and defying the big hand of the corporation.

Open source is a movement that is technical,

political and sociological.

4

Open source is a movement

that is technical, political

and sociological.

Open Source: Open for Business identifies

10 trends that are defining the open source

movement. The report probes technology,

mission-critical applications, savings oppor-

tunities, and legal and business issues,

concluding with core propositions for getting

started on your organization’s open source

journey. In the conclusion, the trends are put

in perspective with a matrix rating each

trend against a set of key business drivers.

(See chart page 84.)

These key business drivers underlie the trends

and are putting open source software at the

center of business strategy. Open source is

decreasing time to market for key products

and services (e.g., Deutsche Bank), offering

new possibilities for solving critical business

problems (e.g., BlueScope Steel), and pro-

viding business interoperability through

standardization and technology transparency

(e.g., Danish Ministry of Finance).

Read on to understand more about open

source – the movement, the technology, the

business implications.

5

The heart and soul of the open source movement

is community. The community brainstorms and devel-

ops the software, fixes it, enhances it. The community

reuses it to spawn new innovations. The community

shares and feeds off expertise in a loosely-structured

meritocracy. The culture is about participation, not

profits.

What motivates people, then, to get involved in open

source? Why do they volunteer their time? What do

they learn that can be passed back to their companies

as best practices?

CULTURE OF COMMUNITY
Community in IT has been around since the dawn

of computers, the 1940s, when software was created

for mainframes and freely shared among the limited

few at universities and government-funded labs

who knew how to use computers – an elite corps

of programmer enthusiasts. Today the network effect4

of the Internet enables programmers around the world,

and users, to participate in communities more deeply.

Why should people care about community? Naysayers

will argue that people can only be motivated by money.

But that’s not true: look at the myriad volunteer

organizations around the world, from the Red Cross

to the Peace Corps. Much of the world lives by volun-

teer efforts benefiting the greater good; why should

the IT sector be any different? Open source has a

different social heart beat, to be sure, but today’s

IT sector need not be resistant to the notion of

community.

6

T R E A S U R E C H E S T : T E C H N O LO G Y T R E N D S

C U LT U R E O F C O M M U N I T Y:

The Heart and Soul of Open Source Is Community

The open source movement is not confined to a limited group of products or people but is

rich in breadth and depth; it is a treasure chest teeming with technologies and best-practice

methods. This section explores 10 trends core to the open source movement:

Culture of Community

Moving Up the Stack

Mission Critical

Sweet Spot

Software Revolution

At Your Service

Invisible Man

Market Force

New Domains

Fun Factor

Indeed, despite the presence of a strong proprietary

software industry, software development practices

historically have been rooted in community and sharing.

The Internet itself was an open, collaborative effort,

starting with the linking of four nodes in 1969. This

was followed by many initiatives that became precur-

sors to the modern open source movement, including

Richard Stallman’s GNU project, MIT’s Project Athena

and public domain software. (Stallman founded the

Free Software Foundation and authored the General

Public License, or GPL, the most widely used open

source license today. See Legal and Business Issues.)

The open movement gathered

steam in the early 1990s with

Linux, and the commercialization

of the Internet in the same decade

turbocharged the effort. In 2000,

Eric Raymond famously character-

ized this new form of development

in his “cathedral and bazaar” paper.5

Proprietary development was like a

cathedral: massive, closed, slow and

even reverent. Open source devel-

opment was like a bazaar: flexible,

open to new ideas and approaches,

faster and very independent.

At the heart of this development

is the community. Typically, the

community is seeded by a single

person, a genius programmer who

creates the initial code: Stallman

for GNU, Linus Torvalds for

Linux. The community comes

in to enhance what the initial

programmer has started.

As Raymond wrote in describing

Linux: “From nearly the beginning,

it was rather casually hacked on by

huge numbers of volunteers coordi-

nating only through the Internet.”6

This community approach was the

jewel, Raymond asserted: “The most

important feature of Linux…was

not technical but sociological.”7

THE COMMUNITY TAKES OFF
By the late 1990s the network effect was in full swing,

as was the momentum around Linux development,

the most prominent open source project to date. The

open source development community had become a

credible force, and it continues to grow strong today.

One sign of community credibility is SourceForge, the

world’s largest open source software development Web

site. With over 82,000 hosted projects and more than

860,000 registered users, SourceForge is a community

of communities for developers. SourceForge lends

7

‘00

1,362

16,249

32,739

55,883

82,719

20,000

0

40,000

60,000

80,000

100,000

‘01 ‘02 ‘03 ‘04 ‘05

Pr
oj

ec
ts

7,908

125,758

339,337

560,290

864,996

‘00

0

200,000

400,000

600,000

800,000

1,000,000

‘01 ‘02 ‘03 ‘04 ‘05

U
se

rs

Soaring growth in the number of projects and registered users at SourceForge,

the primary site for open source software development, shows how the open

source movement has accelerated in the last few years.

Source: Sourceforge

THE OPEN SOURCE COMMUNITY TAKES OFF

http://www.sourceforge.com

credibility to the communities, demonstrating that they

are worthy of being managed with a sophisticated site

that provides project hosting, version control, bug

and issue tracking, mailing lists, e-mail archives, project

management and collaboration resources. This is not a

renegade process but a well-managed one.

Who are these open source developers? A survey by

Boston Consulting Group in 2002 of developers using

SourceForge found that respondents were, on average,

30 years old and had 11 years of programming ex-

perience. These are not just college students or people

in their first jobs but experienced IT professionals.

Many held paying jobs as programmers (45 percent),

system administrators (6 percent) or IT managers

(6 percent). Still, one cannot overlook the student

ranks (20 percent) and academia (7 percent).8

Another measure of developer credibility comes from

GForge, an open source collaborative development envi-

ronment. At GForge.org you can search for developers

with specific skills, the way a corporation can query a

skills database for capabilities. Developers are ranked

by each other in a sophisticated manner: the higher

your own ranking, the more weight given to your

rankings of others.

In addition to people, community credibility stems from

the product – its functionality, performance, technical

elegance and level of use. “Apache software is so good it

drives you to join its open source community,”

observes Gabor Herr, a solution architect for CSC’s

e-Business and Technology Center in Wiesbaden,

Germany. Conversely, a poor or esoteric product will

be less likely to draw people to its community.

Community credibility is an underlying motivator

for joining an open source project. The lure of open

source includes solving technical challenges; drawing

on the best minds around the world; the prospect

8

100% 20 30 40 50

0.2License forces me to

11.1Beat proprietary software

11.0Open source reputation

Percentage of Respondents

16.3Other

17.5Professional status

20.3Work with team

28.5Obligation from use

29.7Non-work functionality

33.1Code should be open

33.8Work functionality

41.3Improves skill

44.9%Intellectually stimulating

Note: Question asked for top three motivators of

free/open source software participation, n=684.

Source: The Boston Consulting Group, in cooperation with the Open Source

Developer Network, surveyed developers participating in software projects

on SourceForge.net (2002).

DEVELOPER MOTIVATIONS

of making a contribution the rest of the community

can use; the enhanced skills and reputation (market-

ability) that comes from being an active member of the

community; and the potential for providing fee-based

services for open source software (see At Your Service).

As well, developers are motivated by the opportunity

to branch out and work with products they don’t

normally work with in their day jobs – say, video pro-

gramming – and they are also motivated by pure fun.

(See Fun Factor.)

SHARE THE WEALTH
Best practices learned from the open source community

can be passed back to the corporation and adopted

in its methodologies. Developers involved with open

source, either on their own or as part of a corporate

project, can “share the wealth” of open source ways,

opening up a new world of development and project

management in the corporation.

This is happening at CSC, where a small team’s initial

foray into an open source project has led to standard

development practices that incorporate open source

methodology and mentality.

“We have learned to use approaches and behavior

similar to what we found in the open source commu-

nity,” explains Stefan Höhn, a lead architect for CSC’s

e-Business and Technology Center in Wiesbaden,

Germany. “From working on several open source

projects, we gradually adopted many best-of-breed

open source processes into our development method-

ology. We became so competitive that we were able to

outperform off-shore projects in terms of develop-

ment speed, quality and price.”

In 2001, CSC began working on a system for a

subsidiary of Deutsche Börse Group (German Stock

Exchange) in Frankfurt am Main. CSC was asked

to reduce overall costs by using open source software

for parts of the system. The CSC team chose some well-

established open source components for the underlying

infrastructure. Although this was not CSC’s first contact

with open source software, it was the first time the team

had worked on a project that relied solely on an open

source community for support.

This meant the team had to learn to get support

without calling a vendor hotline. Team members

combed the Internet for information, e-mailed people

they had no business relationship with, asked questions

in online forums they didn’t know existed, and dug

into documentation that ranged from poor to fantastic.

Surprisingly, it worked, and led to a significantly larger

project. (See Mission Critical.)

“It turned out better than we expected,” Höhn recalls.

“However, we had to learn to cope with problems in a

totally different way than we were used to.”

LESSONS FROM THE COMMUNITY
Four approaches emerged from the open source world

that infiltrated CSC methodologies: collaborative

source code management, collaborative development,

automated regression testing, and a more agile develop-

ment methodology.

“During the team’s first contact with the open source

world, we discovered the social dynamics of the develop-

ment communities and realized there was a lot to learn

from their processes,” Höhn says. “So we adopted our

first collaboration tool, for source code management.”

This was CVS, the code version management system

used by SourceForge. Today CVS is also used in CSC’s

GPES Unix Software Factory, housed in the U.K., to

help manage internal Unix systems.

The success of the initial open source project com-

pelled Deutsche Börse Group to go forward with

open source on a larger scale, for a reporting system

to support its regulations enforcement process. The

customer mandated that the system be developed

without incurring any software licensing fees (beyond

the proprietary database already being used). This

meant open source.

The project team was distributed, located at CSC

offices, the client site and a subcontractor’s office.

The lack of face-to-face contact among the developers,

coupled with CSC’s experience with open source

development, led to the creation of the CSC Toolbox,

a Web-accessible collaborative environment for the

9

10

project team. As a first step, the team incorporated

CVS into the Toolbox to allow distributed access to

the source code.

However, whereas in SourceForge all information is

freely available, CSC’s project required more security.

The team added encryption and authentication to the

Toolbox, to ensure that the sources were not compro-

mised during transmission and that only authorized

personnel had access to the collaborative environment.

As the project proceeded, more services were added. One

was an issue-tracking tool (Mantis), which enabled the

client to participate in the collaborative environment.

Testing was another area where open source concepts

were adopted. A distributed development environment

can lead to loss of control with software versions. In

the open source world, this is addressed with unit and

regression tests, which the CSC team adopted. Besides

a noticeable quality improvement, the approach led

to faster development and an earlier project completion

date.

Later, when the team was asked by a different customer

to review its development process for a large, strategic

project, the team recommended a more agile method-

ology akin to open source methods. The customer’s

conventional development model was plagued by

labored workflows and inadequate quality.

Based on the CSC team’s proven development model,

the customer changed its model to be more quality

driven (rather than time driven) according to CSC’s

recommendations, and made its quality measures more

apparent to management. Test results were published

for all to see, from developers to senior managers; every-

one could monitor and manage progress.

Naturally, the CSC team used open source software

to support the customer’s new development environ-

ment. JUnit and CruiseControl were the technological

cornerstones. JUnit is for writing tests for small units

of code, such as an object. CruiseControl builds and

runs tests and creates a management dashboard. This

is key in a distributed development environment,

where testing needs to be fully automated. For this

project, a team of 70 developers wrote approximately

1,600 unit tests in just a few weeks.

With this experience, CSC further refined its open

source-influenced methodology, which would be used

again and again in new projects.

One of these was a cross release management system,

a truly agile development effort in which CSC out-

performed off-shore competitors. The system was an

application created for Deutsche Bank. For the same

price as off-shore competitors, CSC provided newer

technology, better quality, faster development and

reduced risk from having developers on site.

This led to the latest CSC project for Deutsche Bank,

to develop one of its mission-critical systems based

completely on open source software and using agile

development. The agile, open source approach suits

perfectly the rapid project schedule, which has deliver-

ables every month.

CSC continues to learn from its open source experi-

ences. As at CSC, employees can participate in open

source projects and communities and bring back best-

of-breed approaches to the corporation at large. These

approaches depend inherently on the community.

The community offers a powerful approach for tackling

problems, especially complex ones, and maximizing

performance. Among other things, open source

communities are being used today to translate open

source software and applications into rare languages

to help bring computing to developing nations. This

is the sort of complexity – advancing the globalization

of computing through localization – that suits the

open source community well.

…employees can participate in open

source projects and communities and

bring back best-of-breed approaches

to the corporation at large.

11

M O V I N G U P T H E S TA C K :

Open Source Is Not Just Linux

The development community has been hard at work,

for today open source software pervades the software

stack. Open source extends from the lowest reaches

of Linux at the operating system level to databases,

application servers, development tools and, more slowly,

business and desktop applications. Open source is not

just Linux but a broad collection of technologies that

provides a range of functionality and opportunity.

To discover what’s in the open source collection, we

will examine the software stack using a taxonomy from

Flashmap Systems.9 As we move through the stack using

this taxonomy – Enterprise Infrastructure, Business

Applications, Commercial Off-the-Shelf Applications

– we will see a rich portfolio of open source software

for the infrastructure. Higher-level business applications

are rare but evolving as open source software gradually

makes its way into common business processes.

A word of caution: It is debatable where the software

stack actually starts and ends in any one organization

given today’s trends toward outsourcing and blurred

lines between businesses. We are using a subset of

Flashmap’s taxonomy to highlight key portions of

the stack common in most organizations and relevant

to uncovering the best in the open source collection.

What we discover is only a small portion of all the

open source software that exists.

ENTERPRISE INFRASTRUCTURE
The physical hardware used to interconnect computers

and users, and the software that supports the flow

and processing of information. (See chart page 12.

Our focus is software.)

Platforms
The execution foundation for all systems and applica-

tions software.

Linux, the most well-known software in the modern

open source movement, is the number two server

operating system behind Microsoft’s Windows NT.

IDC predicts that Linux platform revenue will increase

at more than four times the overall industry average

for all platforms through 2007.

Besides Linux, there is a host of other open source

operating systems, all Unix derivatives like Linux. BSD
Unix (Berkeley Software Distribution) was one of the

first operating systems to become open source. Several

open source operating systems have been developed

from BSD Unix, including FreeBSD, OpenBSD and

NetBSD, an advanced operating system for research

and production environments. Additional platforms

based on BSD Unix are in various stages of develop-

ment. In the proprietary world, Sun has announced

it is releasing Solaris, its flagship version of Unix, to

the open source community.

Even specialized operating systems exist as open

source. One of these is the Robotic Operating System,

a behavior-based operating system that runs on top

of Unix-like systems.

Another important dimension of the platform is how

it can be scaled by leveraging the network. Grid

computing is one example: a large virtual computer is

assembled by linking tens, hundreds or thousands of

heterogeneous systems.

One leading open source implementation for grid

computing comes from the Globus initiative; its

Globus Toolkit is a fundamental enabling technology

and considered the de facto standard for grid comput-

ing. The latest version of the toolkit, Globus Toolkit
Version 3 (GT3), is an open source implementation. The

toolkit is based on the Open Grid Services Architecture

(OGSA) and is core to grid computing offerings by

major vendors including IBM and Platform Computing.

Another popular implementation is designed around

localized clusters and enterprise grid needs and comes

from Sun’s Grid Engine project, an open source collab-

orative development effort. With the acquisition of

12

Gridware, Sun has been able to facilitate the deploy-

ment of compute farms, the basic building blocks of

grid computing.

Elsewhere in the cluster arena, Linux is having a

dramatic impact on high performance computing

(HPC) clusters; its low cost is reducing previous

barriers to entry, and more open source HPC systems

are emerging. For example, the company Linux

Networx has been selected to build the two most

powerful Linux clusters in the world, for Lawrence

Livermore National Laboratory and Los Alamos

National Laboratory. Powering the clusters is

LinuxBIOS, an open source BIOS alternative from

Linux Networx that enables low-overhead, highly-

scalable clusters of thousands of nodes.

ENTERPRISE INFRASTRUCTURE TAXONOMY

Copyright © 1993-2004 Jeff Tash, Flashmap Systems, Inc. (www.flashmapsystems.com). All Rights Reserved.

http://www.flashmapsystems.com

13

In addition to labs, open source HPC clusters are being

put to work in industry. One large energy company is

using such a cluster to power its seismic research for oil

exploration. (See Sweet Spot.)

Other important open source HPC software initiatives

include Scyld Beowulf, OSCAR and openMosix.

Middleware
The “magic glue” that connects clients to servers.

The Internet and its various protocols have their seeds

in government and university research projects, which

were the roots of the open source movement. So the

first and thus reference implementation of nearly all

Internet protocols, including the fundamental TCP/IP,

was done as open source software and became part

of BSD Unix.

Driven by U.S. export restrictions on cryptographic

software, many Internet security tools were developed

outside the United States in the 90s. These open solu-

tions fueled innovation by enabling people to bypass

the U.S. restrictions. As the tools became commodities,

the restrictions were relaxed.

For example, OpenSSL (formerly known as SSLeay)

was written by Eric Young and Tim Hudson, two

Australians who started SSLeay to provide a free

version of Netscape’s SSL/TLS protocol. Since it was

implemented outside the United States, OpenSSL

could be used as a full-strength encryption protocol

for Internet transmissions (e.g., HTTPS). Today

OpenSSL is the cryptography library for many open

source products, like the popular Apache (for HTTPS

transport), and is widely used inside and outside the

United States.

Another important security protocol is SSH, which

spawned OpenSSH, an enhanced and open source

version of SSH. Today OpenSSH is the de facto standard

for secure remote administration of Unix and Windows

systems.

Open source provides a reliable implementation of

directory services in OpenLDAP, a collaborative effort

to deliver a commercial-grade open source LDAP suite

of applications and development tools.

For the classic middleware component, message-

oriented-middleware, there are numerous open source

options. Many are based on the Java Message Service

(JMS) API, including JBossMQ, OpenJMS, Open
Source Message Queue (OSMQ) and JORAM.

Queuing systems connect applications asynchronously;

for connecting applications synchronously and over

different platforms, the technology of choice is,

increasingly, Web Services. Microsoft’s .NET framework

is one of the most prominent players. However, open

source frameworks and libraries that use Web Services

have popped up quickly.

The DotGNU project consists of three subprojects.

Portable.NET aims to be a free and portable replace-

ment for .NET. PhpGroupWare, a multiuser Web-based

collaboration suite, also provides a good collection of

Web Services components, all of which can be accessed

through XML-RPC so you can easily integrate them

into Web Service applications of your own. And finally

there is DGEE, the DotGNU Execution Environment,

which provides the core Web Service component of

DotGNU and the functionality of accepting, validating

and satisfying Web Service requests.

Another undertaking is the Apache Software

Foundation’s Web Services Project @ Apache, which

hosts several sub-projects, the most famous being

Axis. Apache Axis is an implementation of the SOAP

(Simple Object Access Protocol) submission to the

World Wide Web Consortium; it is available not only

for Java but also for C++. Based on Axis, many other

projects have followed, fulfilling more sophisticated

tasks like WSIF (invocation framework), addressing

(implementation of the WS-Addressing specification)

and WSS4J (the security needs of Web Services).

Serverware
Software that runs on servers – back-end, multithreaded,

multiprogrammed computers accessed by multiple clients.

The most well known category of open source software

besides operating systems is server software. The

Apache Web server powers 68 percent of Web servers

worldwide, according to an August 2004 analysis from

Netcraft, a U.K. Internet services company that tracks

these figures. Thus Apache is used more widely than

14

all other Web servers combined (both proprietary and

open source).

The Apache Project, which includes many projects

besides the Apache Web server, is the number two open

source software project after Linux. Apache was started

in 1995 by a group of people who wanted to contribute

software patches to the HTTPD Web server written by

the National Center for Supercomputing Applications;

thus “a patchy” Web server was born.

The original Web server project expanded over time;

in 1999 it spawned the Apache Software Foundation,

which hosts several important open source projects

including Jakarta, PHP, Struts and Apache XML.

Despite Apache’s success, many other open source

Web servers exist, including ACME thttp, Roxen, Jigsaw,

Amiga Apache Web Server, EMWAC HTTP Server
and TUX.

A close companion to Web servers are application

servers. In a field of giants like BEA Systems, IBM,

Oracle and Sun, open source application servers are

making their mark. One of the first that appeared

was Tomcat, a servlet engine meant to be a standard

implementation of Sun’s servlet specification. Tomcat

is regarded as the reference implementation today.

JBoss Application Server is the dominant open source

Java 2 Enterprise Edition (J2EE) application server, with

more than five million downloads. JBoss claims to be

number three (behind IBM Websphere and BEA

WebLogic), with a 25 percent market share. Although

not formally approved by Sun, JBoss fully conforms

to Sun’s J2EE-1.3 specifications and thus competes

directly with the proprietary giants. Other open source

application servers include Jonas (fairly stable and

mature) and Geronimo (an up-and-coming competitor

to JBoss but still in its infancy).

Note that it is beyond the scope of this report to cite

all server areas where open source software is available;

there are endless products for FTP servers, fax servers,

mail servers and so on. However, it is important to

examine one of the more important file sharing servers,

Samba. Samba is an open source server suite that bridges

the gap between Unix and Windows environments.

On Unix platforms, and especially on Linux, Samba

provides seamless access to files and printers through

Microsoft’s network protocols, like SMB/CIFS. When

a back-office migration to Linux is considered, Samba

Apache runs nearly 70

percent of the world’s

Web sites, as shown by

Netcraft’s Web server

survey of over 50 million

Web sites.

Source: Netcraft

(www.netcraft.com)

* NCSA: National Center for

Supercomputing Applications

*

APACHE RULES
Market Share for Top Servers Across All Domains

http://www.netcraft.com

15

is one of the software integration backbones used to

connect to Windows-based clients.

It is also important to examine database servers.

Although there have been open source databases for

years, many companies hesitate to use them. This is

likely because information stored in databases is still

perceived as too crucial to the business for open source.

Further, companies try to consolidate their database

products rather introduce new ones.

Nonetheless, there are mission-critical projects that

have chosen not go with Oracle, IBM, Sybase or another

big player. Instead, they leverage open source options

MySQL, MaxDB, PostgreSQL or Berkeley DB. MySQL,

with over five million active installations worldwide,

is the most successful open source relational database

today. MySQL AB, the company that distributes

MySQL, pioneered the dual-license model by providing

the software under both the GPL and a commercial

(i.e., fee-based) license, to support free distribution and

use as well as proprietary use. (See Legal and Business

Issues.) Besides licensing fees, MySQL AB earns its keep

providing service and training.

MaxDB has its origins in ADABAS D, a commercial

DBMS developed by the German company Software

AG. SAP AG bought ADABAS D as an alternative

DBMS for its R/3 enterprise software suite and con-

tinued development and customization. For strategic

reasons, and to demonstrate that the database had

become a commodity, SAP released it as SAPDB under

the GPL. As the expected popularity and demand for

SAPDB failed to appear, SAPDB was cross-licensed to

MySQL AB. A strategic alliance between MySQL and

SAP was formed to jointly develop and market an enter-

prise open source database capable of running high-end

business-critical applications including SAP R/3.

PostgreSQL is the other major open source database

besides MySQL. Although initially PostgreSQL was a

research project with non-standard features, it was taken

over by an open source development community that

made it a full-featured SQL relational database.

Berkeley DB is one of the most pervasive open source

software components inside many free and commercial

products. As a versatile application database library,

it provides persistent storage for DNS domain name

servers, mail servers, network appliances, knowledge

management, content management and document

management.

Over the last five years, portals have become an

important part of the enterprise infrastructure. In

turn, there has been noticeably more portal activity

in the open source community.

The most widely known open source portal framework

is Apache JetSpeed. Although stable as a framework

and being used by some commercial vendors as

the basis for their commercial portal server, JetSpeed

aims to be a minimalist framework. At the other end

of the spectrum is the eXo platform, an open source

integrated application suite that provides several

dependent, loosely coupled services including logging,

persistency, XML processing and caching at the low

end; a portlet container and workflow services at

the middle level; and e-commerce and publishing ser-

vices at the high end. Thus, eXo takes a full-function

approach.

With the publication of the Java Portal Standard

(JSR-168) in October 2003, portals have improved

in terms of quality, features and standardization. The

standard ushered in development at existing projects

like JetSpeed and Liferay, also an open source portal,

to comply with the standard.

Another well-known open source portal is PHP-Nuke.

Thanks to the work of the open source community,

there are more than 500 different modules that can

be used to personalize a PHP-Nuke portal, including

modules for weather, e-commerce, photo galleries,

animated chat and video games.

Complementary to portals are content management

systems. OpenCms, a prominent open source content

management system, supports the creation and man-

agement of complex Web sites without requiring

knowledge of HTML. A neat and simple editor with a

user interface similar to well-known office applications

helps the user create the content, while a template

engine enforces a site-wide corporate layout. CSC has

16

made two contributions to OpenCms: a translation of

the online help from German to English and a correc-

tion that expanded OpenCms’ Oracle database support.

Finally, a different kind of content management system

that pervades the open source world is the wiki. A wiki

is a virtual shared space where documents can be

authored collectively using a simple markup language

and a browser. The speed of creating and updating

pages is one of the defining aspects of wiki technology

(“wiki wiki” in Hawaiian means super-fast). Generally,

modifications are accepted immediately without review.

An excellent collaboration tool, wikis are especially

handy for projects involving people in dispersed

locations (like this report’s research team, which used

a wiki). To date, the English-language Wikipedia, an

open source encyclopedia on the Web, is the largest

wiki, followed by the German-language Wikipedia.

(See New Domains.)

Manageware
The myriad products used to administer and oversee

the management of operating systems, network devices,

serverware products and applications.

Enterprise and system management is most often

left to comprehensive systems like HP Openview, IBM

Tivoli, BMC Patrol and CA-Unicenter. There is no sign

of a comprehensive open source system management

project that competes with the proprietary players.

Perhaps one reason is the lack of standards for consol-

idating information in data centers and for interaction

between the different tools, servers and applications

being managed. It was only in fall 2003 that some 40

system management vendors formed the DCML (Data

Center Markup Language) Organization, committed to

designing and developing an open standard to facilitate

data center interoperability and better integration

between tools. As the organization states on its Web

site, DCML does for the data center what HTML did

for content and IP did for networking: facilitate inter-

operability and make proprietary approaches obsolete

by providing a vendor-neutral way to describe the data

center environment and its management policies.10

Once standards are defined, proprietary and open

source products will emerge, bringing more standard-

ized methods to the management of applications. Until

then, vendors like Covalent Technologies will provide

commercial products for Web application management

that aim to “tame” the open source. The company

supports major open source products in its Covalent
Enterprise Ready Server including Linux, Apache,

Tomcat, JBoss and MySQL.

One of the few open source products that provides

server administration is Webmin, a Web-based interface

for system administration for Unix and Unix deriva-

tives, including Linux. Although a valuable front-end

administration tool for servers, Webmin is not – nor

is it supposed to be – a replacement for an enterprise

or network management system.

There are other individual open source system manage-

ment tools that target a specific area. These tools are

based on the current management standards SNMP

(simple network management protocol) and JMX (Java

Management Extensions).

SNMP, a relatively old standard, is supported by many

open source products. Most of them are libraries

enabling applications to provide information via SNMP.

Only a few front-end tools exist for collecting, organiz-

ing and visualizing SNMP data. Scotty, a Tcl/Tk-based

management console, is one example providing a

unified view of SNMP resources across a network

infrastructure. And there is OpenNMS, an open source

network management system that provides SNMP-

based functionality and can monitor services being

provided on the network.

In Java server applications, JMX has become a standard

for manageability. It is well supported by various open

source products. On the application side, MX4J provides

the framework for manageability. On the client side,

MC4J provides a sophisticated management console

with configurable dashboards and other features

comparable to commercial product features.

The bottom line on manageware is that countless

individual open source tools are available to manage,

monitor and evaluate systems and applications in the

IT infrastructure. However, there is no single open

source project presenting a comprehensive, integrated

approach. The individual tools are not well known,

17

and they would require considerable integration to be

used in a management dashboard. We can expect to

see more activity in open source for a comprehensive

approach to system management and monitoring as

this area emerges.

Clientware
Software that runs on clients or standalone computers.

Linux is accepted as a server platform, but what about

Linux on the desktop? Slowly, Linux is being perceived

as a viable desktop operating system. What is important

about clientware is that ordinary people – not developers

or administrators – use it. Indeed, a key characteristic

of a client – which includes PCs, workstations, hand-

held computers, PDAs and smart phones – is a user

interface. Ease of use is paramount. This is important

because Linux is not considered “user friendly;” it was

originally written by developers for developers.

Thus, it was long doubted that open source could match

what is generally available on the Microsoft Windows

desktop, but times are changing. One of the earliest

non-Windows desktop operating systems, the X
Window System (“X”), was the first open source

project to have commercial impact. X was a funda-

mental building block upon which other commercial

operating systems, such as Solaris and HP/UX, built

their user interfaces. And without X, there wouldn’t be

KDE, GNOME and other open source software.

X provides the foundation for a graphical user interface:

drawing and moving windows on a screen, and inter-

acting with a mouse and keyboard. X does not provide

the user interface itself; that is handled by user software.

Thus X-based environments can look very different.

KDE and GNOME, based on X11 (the current version

of X), are two open source desktop graphical user inter-

faces for Linux. KDE, which is the based on Trolltech’s

Qt Toolkit, provides a desktop environment similar

to Windows. Many innovations from KDE have been,

or will be, adopted by Microsoft for Windows: desk-

top styles and themes, rounded windows, transparent

windows.

Open source software permeates the software stack.

This summary highlights the most prominent open

source software in each area of the stack.

CLIENTWARE

OpenOffice

Mozilla Firefox

Ximian Evolution

GIMP

MANAGEWARE

MX4J

MC4J

CVS

SERVERWARE

MySQL

Apache

JBoss

OpenCMS

Jetspeed

Samba

Sendmail

MIDDLEWARE

Openadaptor

OpenLDAP

Apache Axis

OpenJMS

Hibernate

PLATFORMS

Linux

FreeBSD

Globus/OGSA

OPEN SOURCE SHORT LIST

Source: CSC with Flashmap Systems

18

Making software development more

efficient by using the right people and

the right development tools is key to

reducing IT costs. People associate

open source software with infrastruc-

ture, but it is also important in the

development toolkit. Often, reducing

labor is seen as the only way to cut

development costs, but working

smart with the right tools can be as,

or even more, powerful. This is

where open source comes in, as

the ultimate reuse library. Are your

developers reinventing the wheel

or using open source?

“Open source is the ultimate

global reuse library,” observes

Paul Gustafson, director of CSC’s

Leading Edge Forum. CSC saved

considerable development time in

creating its Proactive Service

Management solution by using open

source software, which accounts

for about one-quarter of the

overall solution. Without open

source software, CSC would have

had to use much costlier, more

time-consuming methods. (See

Software Revolution.)

The history of open source is

software by developers for developers.

Thus the development toolkit is

rich in open source languages, tools,

integrated environments and com-

ponents. The key pieces in the open

source development toolkit constitute

the soul of the software stack,

bringing to life the applications that

run on it.

Freeing the Languages

In many ways, the C programming

language is the father of all open

source projects. C boosted the GNU

project and Linux significantly.

GCC, the GNU C Compiler (later

the GNU Compiler Collection), is

the compiler that Richard Stallman

wrote for the original GNU operating

system. Because GCC was freely

available and portable to many

platforms, unlike other languages and

compilers at the time, developers

were able to create more tools for

the GNU project. Linus Torvalds,

the originator of the Linux kernel,

based his entire development on

GNU’s tools and GCC; many who

contributed to Torvalds’ project

used GCC as the basis for other

development efforts. More languages

followed, and many of the tools

needed to work with them eventually

became open source.

Inspired by C and other scripting lan-

guages, another free software language,

Perl, surfaced in 1987. Perl was originally

written by Larry Wall at NASA’s Jet

Propulsion Laboratory. After its release,

Perl caught on quickly and became the

Swiss army knife of the system admin-

istrator. Perl became the first language

at the dawn of the Web age for writing

applications for the Internet.

One of the most prominent Web

programming languages today is PHP.

PHP started as a simple set of Perl

scripts for monitoring Rasmus

Lerdorf ’s online resume (hence the

name Personal Home Page/Forms

Interpreter). When Lerdorf noticed

that more functionality was needed,

he wrote a larger implementation

based on C that facilitated databases

and helped PHP developers write

simple and dynamic Web applications.

Today, PHP 5 is a full-featured Web

application development platform;

several million sites have installed

PHP, accounting for over 20 percent

of the domains on the Internet.

Countless open source projects –

including portals, wikis, content

management systems, groupware and

forums – are written on PHP, with

many more to follow.

Are You Reinventing the Wheel or Using Open Source?

Soul of the Stack

19

Although not open source, Java is

important to mention because it was

the first language that could be used

on any platform (write the applica-

tion once, run it on many different

systems). Other than C, Perl and

PHP, Java probably has the most

open source projects and support

from the open source community

of any programming language.

Freeing the Tools

For a long time integrated develop-

ment environments (IDEs) – where

developers write, test and document

the application – were rare in the

open source world. Java developers

had plenty of IDEs to choose from

(most of them costly) and thus IDEs

were often used inconsistently.

Things changed when Sun’s NetBeans

appeared on the IDE horizon and

eventually became open source in

2000. (See Market Force.) A year

later, IBM announced the release

of a new IDE called Eclipse. Eclipse

had undergone much development

inside IBM before it was released as

open source. Recently BEA Systems

announced its intent to release

BeeHive, on which its IDE is based,

as an Apache open source project

to leverage BeeHive’s power across

the global development community

and foster its continued development.

With several good open source IDEs

to choose from, developers are

consolidating on them. It is amazing

how the pervasiveness – due to free

availability – of these IDEs has boosted

developer efficiency, brought consis-

tency and ease of integration, and

triggered new features almost every

day. Developers use the tool, improve

it, and share those improvements

with others.

Reuse and Reward

Armed with freely-available open

source software, developers are

witnessing a dream come true:

applications can be assembled using

parts from the toolkit rather than

writing code from scratch.

In addition to languages and IDEs,

there are numerous other parts in

the toolkit, from complex frameworks

to libraries of common and not-so-

common functionality. Frameworks

like Struts, Java Server Faces, Cocoon,

Spring and Webworks give projects

a kick-start and a common baseline.

Unit testing libraries like JUnit boost

code quality overall. Sophisticated

components like Hibernate and

Castor make professional functionality

freely available like never before.

It is amazing what can be achieved

when the parts are assembled by a

deft developer. Why reinvent the

wheel when others have not only

thought about but constructed the

component? What makes the magic

is that the code is freely available

to be used, studied, improved and

shared.

Boosting software development

efficiency by using the right people

and the right combination of tools

from the soul of the stack will help

managers win the cost game – and

let the heart and soul of developers

shine in unprecedented ways.

20

GNOME (GNU Network Object Model Environment)

is available for Linux, Unix and Unix-like operating

systems and is the official desktop of the GNU Project.

GNOME’s usability, with an up-to-date look and feel,

has made it a superior replacement for the established

Unix desktop CDE.

A futuristic desktop environment is Sun’s Project
Looking Glass, a prototype next-generation 3D desktop

environment. The project began as part of advanced

development at Sun and was recently released as open

source to gain insights from the community and to

stimulate people’s interest in the new technology. The

project uses 3D windowing and other state-of-the-art

techniques; it will be an interesting project to watch.

Sitting on top of the graphical user interface, the most

widely used software package on the desktop is the office

suite, which includes word processing, spreadsheet,

presentation and personal information management

software. OpenOffice11 is an open source alternative

to the dominant Microsoft Office suite. OpenOffice is

gaining momentum, with over 16 million downloads

and countless installations from CD-ROM, according

to its Web site. In contrast, Microsoft claims 300 million

users and a 94 percent market share worldwide. (See

Market Force.)

OpenOffice has a mission to create, as a community,

the leading international office suite that will run on all

major platforms and provide access to all functionality

and data through open-component-based APIs. Its

major innovation is using compressed XML as its doc-

ument file format (rather than a proprietary format).

For many companies, the office suite is still one of the

most important applications in the information age.

Compatibility with other office software is a major item

being addressed by OpenOffice as well as other players

like Sun with its StarOffice.

There is also open source project management soft-

ware, namely Open Workbench, which is similar in

functionality to the widely known Microsoft Project

and provides robust project scheduling capabilities,

including the ability to generate schedules based on

resource constraints.

But the office suite alone does

not make a desktop complete; the

browser is essential. Without repeat-

ing the story of the browser wars

here, the browser space is teeming

with open source versions such

as Mozilla Firefox, Nautilus and

Konqueror. Firefox is gaining

increasing acceptance from former

Internet Explorer and disappointed

Netscape users. (The basis of Firefox

is Netscape code, which was released

as open source. See Market Force.)

Although the browser is key as

the doorway to the Internet and

network-centric applications,manag-

ing personal information – e-mail,

calendar, address book, tasks, notes

– is also critical. Coming soon from the Mozilla project

is the popular open source e-mail application

Thunderbird. PC World raved that “this surprisingly

full-featured open-source program is a snap to use.”12

Although still in its early stages at the time of this

writing, Thunderbird provides a stable and promising

e-mail platform with a sophisticated junk mail filter.

Add the Mozilla Calendar to it and you have a nice

personal information manager (PIM) environment.

Project Looking Glass is an open source project at Sun Microsystems that

explores a state-of-the-art 3D desktop environment.

Source: Sun Microsystems

OLAP (on-line analytical processing) is the most

powerful business intelligence technology currently

available. The most prominent open source project

in this area is Mondrian, released in 2003 and billed

as the first production-quality open source OLAP

server. OLAP enables you to interactively analyze very

large data sets in near real-time. In contrast to typical

database transactions, OLAP focuses on analyzing bulk

data rather than modifying specific data. Mondrian

reads data from SQL and other data sources, and

aggregates data in a memory cache. It uses MDX

(multidimensional expressions) for its query language.

Mondrian implements a Java-based server that is

platform neutral and provides a version for Microsoft’s

.NET platform.

In addition to the OLAP server, functionality is needed

to generate reports; this functionality can be found in

the open source JPivot project. JPivot lets users do

typical OLAP manipulations like slice and dice, drill

down and roll up. By using Mondrian and JPivot

together, data warehousing is possible in the open

source world. CSC has prototyped a proof-of-concept

for a financial services client that showed good results

with Mondrian and JPivot for small data mining appli-

cations. However, it would be unfair to compare this

approach to commercial products from Hyperion,

SAP, IBM, Oracle or SAS, which provide considerably

more functionality and sophisticated front-ends, and

hide the technical details from the business architect

and developer.

COMMERCIAL OFF-THE-SHELF (COTS)
APPLICATIONS
Packaged applications organizations buy (rather than

build). Includes cross-industry horizontal applications

and vertical industry solutions.

At first glance, “off-the-shelf” and “open source” look

like a contradiction in terms. One is priced, turnkey

software; the other is freely distributed and freely

modified. But open source can be commercial in

terms of being “productized” and priced for distribu-

tion and support. (See At Your Service.) And off-

the-shelf software can be open source by releasing

portions of the source code, perhaps with limits on

how it may be modified. Today open source provides

a rich collection of tools but has yet to take off in

21

The de facto desktop PIM is Microsoft Outlook, which

delivers full functionality when used with Microsoft

Exchange messaging and collaboration software on the

Windows platform. For the Linux platform, there are

several open source PIMs: Novell’s Ximian Evolution,

which can be connected to Microsoft Exchange;

phpGroupWare; SKYRiX; KDE Kolab Client and others.

On the horizon, an open source PIM with high expec-

tations is Chandler, the brainchild of Mitch Kapor,

founder of Lotus Development Corporation and co-

founder of the Electronic Frontier Foundation. Kapor

formed the Open Source Applications Foundation to

develop Chandler, an ambitious effort to reinvent the

desktop and our digital lives by managing e-mail,

calendar, contacts, tasks, instant messages and other

information in a more intuitive way. For instance,

Chandler organizes information around contexts,

presenting all information related to a project or topic

together rather than making the user dig through

various folders and e-mail inboxes.

With Chandler still in development – it is due out at

the end of 2004 – Kapor is betting heavily on open

source. Chandler will be distributed under the GPL

but licensed differently (fee-based) for commercial

applications. It is hoped that developers worldwide

will develop new contexts and enhance the code.

To Kapor, the open source model is the only way

to develop innovative applications today given the

economic challenges facing software start-ups.

Finally, no discussion of open source clientware would

be complete without mentioning GIMP, the popular

photo and graphics tool that competes with mainstays

such as Adobe Photoshop. GIMP, the GNU Image

Manipulation Program, is used for such tasks as photo

retouching, image composition and image authoring.

BUSINESS INTELLIGENCE
Software that converts raw data into usable information

for decision-making.

Although infrastructure is packed with open source

options, at the higher levels of the stack that is not the

case. Business intelligence is an emerging area for

open source software.

22

Software is software, whether open

source or not. So how does the actual

development process differ when

using open source software versus

proprietary software?

Flexibility. With open source software,

developers are free to use as many

applicable software components as pos-

sible. Developers are not constrained

by license fees and budgets, which

tend to restrict the use of proprietary

components to a few comprehensive

ones, resulting in overlapping and

sometimes incompatible components.

Developers are also not constrained

by proprietary protocols, which often

require using one vendor’s products,

but instead can follow a best-of-breed

strategy.

Nor are developers constrained by

financial commitment. In a typical

development environment, developers

wouldn’t dare discard ineffective

components because of the investment

made to purchase them. Open source

software frees developers to try

different open source components

to see what works best.

Support. Open source support is

pervasive and helpful, a big time-saver

in development projects. Source code

availability results in quicker problem

solving, a better feature enhancement

process and collaborative learning.

Code samples, snippets and tutorials

help developers master new open

source components.

Another support consideration is that

the more expensive the proprietary

software is, the fewer skilled people

there are working with it (beyond the

vendor). Thus the community the

developer taps for secondary support

(after the vendor) is limited compared

to the much broader open source

community.

Innovation. Open source software

facilitates innovation because developers

can experiment with components they

would never use if they cost money

(e.g., persistence frameworks, report

tools, application servers). This is true

with expensive as well as inexpensive

software; in some companies, spending

even $50 has to be approved.

Reuse. Having access to source code

increases the willingness to use open

source software, encouraging reuse

and weakening the not-invented-here

syndrome that often pervades the

development process.

Quality. The development process

may be faster and smoother because

developers can use available, tested

components rather than having to create

and test components from scratch.

Standards. In general, open source

software adheres more tightly to

standards than proprietary software,

providing more interoperability; some-

times open source projects create new

standards. New standards are quickly

supported by open source projects,

enabling developers to try out leading

edge software without creating it

themselves. If the new technology is

not suitable, the only sunk cost is time.

Ultimately, one might still choose

proprietary software, especially if it

is perceived as less risky, as long as

it complies with the standards and is

interchangeable (e.g., a Java application

server).

Licenses. This is a tricky topic with

open source software, not to be

underestimated. Organizations typically

have a good understanding of propri-

etary software licenses but a less clear

understanding when it comes to open

source software. Open source software

is often perceived to be free to use,

period. In fact, open source software

is licensed, and there are many

different kinds of open source licenses.

Organizations need to understand

the provisions of the open source

licenses they are using. (See Legal and

Business Issues.)

What’s Different about Development
with Open Source?

23

M I S S I O N C R I T I C A L :

Open Source Is Industrial Strength

business process functionality and off-the-shelf appli-

cations; however, there is movement in this direction.

Early signs are in Enterprise Application Integration,

which includes messaging systems and adapter frame-

works that help interconnect systems. One of these is

openadaptor, for improved application integration and

e-business. (See Market Force). Astonishingly, there

are even open source ETL (extract, transform and

load) tools that integrate sensitive enterprise data from

numerous sources and transform it into meaningful

business intelligence.

Despite these open source capabilities, proprietary

EAI platforms deliver more business functionality

today, such as understanding SAP business objects or

providing channel protocols like X.400 or formats like

EDI. Thus, open source provides some of the building

blocks but has yet to develop robust business-level

functionalities. Of note: EAI systems delivering

sophisticated functionality are typically far from low-

priced, suggesting there is a ways to go before this class

of software is commoditized.

Still, as will be shown in the Mission Critical trend,

a number of industrial-strength systems are based on

open source and deliver core business functionality.

Along these lines, some Enterprise Resource Planning

systems are beginning to appear as open source

software. One, ERP5, features trading, invoicing,

accounting, manufacturing, supply chain, stock,

customer relationship management (CRM) and

product design. The ERP5 project aims to not only

release the source code but also provide all the

necessary information (legal, social, theoretical) to

allow anyone to introduce and implement the system,

and the resulting process changes, in a small- to

medium-size company.

When one looks at open source ERP or CRM systems

like ERP5, Compiere or GNU Enterprise, which are

well on their way to becoming products, it is breath-

taking to see the range of areas in which open source

business projects cavort around the world. On the one

hand, most of the projects are not comprehensive yet or

haven’t matured enough to be considered for corporate

players. On the other hand, it is worth looking at these

products for medium-sized organizations because open

source definitely is an alternative not to be dismissed.

This alternative will keep growing as open source moves

up the stack to the higher levels, filling them with offer-

ings from the tireless open source community.

The software stack is being put to work as open source

software powers mission-critical projects. From finan-

cial institutions to governments to Google, it is clear

that open source has arrived as an industrial strength

tool. Although this is not the case for all open source

software yet, there is no mistaking that open source is

open for business.

That said, there is still some reluctance or even

hostility to use open source software in a mission-

critical context. Some argue that open source software

is not mature or robust enough for mission-critical

environments – that it is not suitable for large-scale

deployment and is only for small companies and

zealots.

However, open source installations at major estab-

lished organizations show that this not so. The tide

is turning, as open source takes on mission-critical

projects and mission-critical performance levels. The

pieces are there – Linux, Apache, MySQL, Eclipse,

Struts – and organizations are integrating the pieces

into impressive capabilities. These are not pilot projects

or ancillary activities. Open source is front and center,

running the business.

24

OPEN SOURCE AT THE HEART
OF THE BUSINESS
At Deutsche Börse Group (German Stock Exchange)

in Frankfurt am Main, open source software is widely

used. CSC has been one of the partners with Deutsche

Börse Group on its open source systems.

The consolidated architecture of all Internet applica-

tions, some of which are mission critical, is based

completely on open source components in combina-

tion with a commercial content management system

and a commercial database. Specifically, Documentum

WCMS and an Oracle database were combined with a

portal platform composed of Jetspeed, Apache and

the open source search engine Lucene, which allows

people to search the Web sites of deutsche-boerse.com,

www.clearstream.com and www.entory.com (sub-

sidiaries of Deutsche Börse Group). These open

source components run on a JBoss application server

with an integrated Tomcat servlet engine.

In addition, the reporting system that is used by

Deutsche Börse Group to control the timeliness and

quality of regular publications (e.g., annual financial

statements, quarterly reports) that companies have

to deliver if they are registered at the German Stock

Exchange in Frankfurt is based entirely on open

source software.

“The selected open source components gave us the

necessary functionality at the lowest initial cost and

satisfied our requirements completely,” says Rolf Barth,

head of e-Business at Deutsche Börse Group who was

responsible for the organization’s Internet relaunch,

which went live in 2003.

“All questions and requests related to the open source

components could be handled by the project team.

Sometimes the team had to spend some extra effort to

find the correct documentation for a problem, or they

had to fix a bug themselves without the assistance of

the support team of a commercial software supplier. But

these extra efforts would not have justified the extra

costs for licenses and maintenance fees of commercial

products,” Barth explains. “Since going live, the portal

platform has been continually improved by our devel-

opment team. After some minor problems in the

beginning, we have reached an overall availability

of 99.5 percent for our portals.”

The Danish Ministry of Finance is

using a data exchange system made

entirely with open source products

to exchange account information

between roughly 400 public institu-

tions and the Ministry. The solution

can transmit 1.5 megabits of data

per second using a commodity Intel

server running Linux.

Using open source components

allowed the project team to create

a solution that was architected to

exactly meet the client’s needs as

well as reduce overall complexity,

according to Hans Jayatissa, head

of eSolutions for CSC in Denmark

and solution manager on the

project. The open source software

enabled a trim “mix and match”

approach rather than the bloated

“all or nothing” approach that often

10 20 30 40 50 60 70 800%

Base: 50 IT managers and executives at $1B+ North American
companies (multiple responses accepted)

Others* 24

Eclipse 6

MySQL 6

Apache Struts 10

JBoss 10

Perl/PHP 14

Java libraries 24

Tomcat 42

Apache Web server 70

Linux 70%

“What open source software are you running today?”

Percentage of Respondents

*Includes 18 different open source products

Source: Forrester Research, Inc. “Your Open Source Strategy,” September, 2003.

OPEN SOURCE IS MOVING INTO THE ENTERPRISE,
LED BY LINUX AND APACHE

http://www.deutsche-boerse.com
http://www.clearstream.com
http://www.entory.com

25

comes from using a single vendor’s software suite, which

tends to have more features than are needed.

“This was the client’s first use of open source software in

a server environment,” Jayatissa observes. “This project

was seen as aligned with government intentions to use

open source software.

“The government was somewhat relieved to find that

there were large vendors, like CSC, that would propose

– and deliver – an open source software solution. Until

then, open source software solutions seemed to be

proposed only by smaller software vendors.”

By going open source, the Ministry got a simple, reliable

and scalable solution that is easy to deploy, operate and

maintain. In the long run, this translates into a lower

total cost of ownership associated with the system. The

solution, though created with open source components,

is not open source itself. The solution is tailored code

that is distinctly separate from the open source software

used to create it; the Ministry owns the solution and

has full rights to give or sell it to other government

institutions or vendors (for maintenance).

The system is the forerunner of future open source

projects at the Ministry. “The data exchange solution is

an excellent start and can be used as a core component

for data exchange in other areas of the Danish govern-

ment,” notes Peter Henningsen, data exchange project

manager for the Ministry.

At BlueScope Steel (formerly BHP Steel) in New South

Wales, Australia, the company uses open source software

to power a realtime process control and management

information system for the Hot Strip Mill at Port

Kembla. The system, which runs 24 hours a day, 7 days a

week, 365 days a year, translates high-level steel product

specifications into instructions for the process control

hardware. Since the system went live in 2002, the mill

At BlueScope Steel’s Hot Strip Mill at Port Kembla, Australia,

the process control and management information system that

runs the plant 24/7 is powered by open source software.

The mill produces approximately 2.5 million tons of steel

coils per year. In this picture hot steel bars are being coiled

before being rolled through the Finishing Mill, where the

final strip thickness is achieved. BlueScope Steel partnered

with CSC to design and implement the new system with zero

disruption to the plant. The system logs some three gigabytes

of process data per day and communicates directly with

over 10 controllers and measuring devices.

Source: BlueScope Steel

has broken long-standing production records. CSC

provided round-the-clock production support for the

first year of operation. The system uses Tomcat and

Apache in addition to open source tools used for its

development.

Open source is also hard at work in a mission-critical

system for NASA’s Mars Exploration Rover (MER)

Mission. A tool used to analyze data acquired by

the Spirit and Opportunity rovers and plan their daily

“The government was somewhat

relieved to find that there were

large vendors, like CSC, that would

propose – and deliver – an open

source software solution.”

26

activities was developed using open source software.

This tool, the Science Activity Planner, is considered

mission critical because a failure could jeopardize an

entire day of operations for a rover.

Because of budget pressures, the development team

turned to open source to satisfy as many system require-

ments as possible. The project has been a success;

the open source components have contributed to the

agility, high quality and stability of the system.

Back on Earth, the U.S. Navy is using an open source

content management system by Zope Corporation to

coordinate, document and track engineering changes

for the broad array of equipment and parts the Navy

manages. This is not a trivial task; all changes must

be closely monitored and documented because any

change could have far-reaching consequences, be they

for jet engines, ships or other sophisticated equipment

(and those who use them).

OPEN SOURCE FOR MISSION-CRITICAL
PERFORMANCE
Open source plays a major role in applications re-

quiring mission-critical performance. Open source

is delivering on scalability, transaction throughput,

reliability and manageability.

In terms of sheer size, the Associated Press’ AP Hosted

News is a massive service, providing AP news content

for Web sites to some 600 affiliate newspapers and

broadcasters worldwide. The AP uses the open source

MySQL database to power AP Hosted News, handling

hundreds of thousands of transactions a day.

In this control room, called the Downcoiler Pulpit, the

operator looks out over the downcoiler and post-coiler area

of the steel plant. The monitors in front of him are his

process screens, and above him are video monitors providing

key viewpoints throughout the plant. Here the operator

uses the open source-based system to monitor the quality

of the final coiled product, record inspection results and

log defect information.

Source: BlueScope Steel

NASA’s Science Activity

Planner, a mission-critical

tool used to analyze data

from the Mars rovers,

was developed using

open source software.

Source: NASA Jet Propulsion

Laboratory

Financial services firms, whose businesses depend on

high transaction throughput and high reliability, are

beginning to embrace open source. JPMorgan Chase

has harnessed grid computing and Linux to lower costs

and provide better internal IT service and flexibility.

Its Compute Backbone, which consists of over 700 CPUs

running Linux, manages a shared pool of computing

resources for what had been seven discrete systems.

These core business systems help traders assess and

manage financial exposures such as interest rates,

equities, foreign exchange and credit derivatives.

Several other Wall Street firms are using Linux in their

data centers. One of these is Credit Suisse First Boston

Corp., which reportedly processes some 60 million

financial transactions daily. A few years ago Reuters

ported its Reuters Market Data Systems to Linux. The

system, which provides real-time market data and

financial news, is used by major brokerage houses.

Besides the financial world, another high-throughput

environment is government elections. When 48 million

people voted in the German parliamentary elections in

2002, the system for calculating the preliminary official

results on election night used open source software

(e.g., MySQL, Tomcat, JBoss). The system processed

data from 80,000 polling stations, analyzing and dis-

playing results in real time; the full analysis was

completed at 3 a.m. the next day.

FROM CUSTOM TO GENERAL BUSINESS
APPLICATIONS
In addition to mission-critical custom applications

for large organizations, open source is moving into

mission-critical general business applications for small-

to medium-size businesses. A good example of this is

Compiere, an open source ERP solution for companies

with revenues of $2-200 million. Compiere’s users

include an auto parts manufacturer in the United States,

a tire retailer in Germany, a metal parts maker in Brazil

and a cable manufacturer in Singapore and China.

27

Web search engine Google is perhaps

the quintessential open source scalable

project.

According to an article on MySQL AB’s Web site:

…affiliate newspapers commonly divert more than

150,000 pages of content per day from their own

Web site to AP Hosted News during an average

news cycle, a number that can more than triple to

as many as 500,000 pages per affiliate on a busy

news day. Because affiliate news organizations rely

so heavily on AP technology and content to retain

reader loyalty, the underlying database in the AP

Hosted News application must offer optimal per-

formance and the ability to scale to support 11,000

concurrent users.13

Another application area with a large user base where

open source is under consideration is the Australian

Tax Office. In February 2004 the ATO, which serves

millions of taxpayers, adopted an open source software

policy for the first time, opening its Microsoft environ-

ment to alternatives such as Linux. There have been many

government initiatives around open source software, as

governments in China, Korea, Japan, Europe, Australia

and the United States, as well as the United Nations,

consider open source policy and options.

In Belgium, open source tools have been deployed for

systems for the police as well as for the country’s new

electronic identity cards. CSC has been active in both

efforts, using open source software for its technical

merits. Commenting on the tools for the ID cards,

which are being distributed to 10 million Belgian

citizens, Marc Stern, security solutions group manager

for CSC in Brussels, notes: “Using open source compo-

nents was the only way to get the level of quality needed

in the time frame needed. We actively participated in

the development of some of the open source software,

notably Apache, by adding some enhancements or

missing functionality with the help of the community.

These contributions helped ensure that the ID card

system would run smoothly on most platforms, as the

software has to run on almost any desktop computer

used by a Belgian citizen.”

Web search engine Google is perhaps the quintessential

open source scalable project. The system is said to have

grown to over 100,000 Linux computers spread over a

dozen data centers around the world, serving up some

200 million searches on an average day.

28

The open source community

is in a better position to

provide secure code than

proprietary vendors because

there are so many people

reviewing the code.”

Jason Arnold, program manager of

CSC’s H.E.A.T. security product

At first glance, open source and

security appear to be an oxymoron,

but in fact they are highly compatible:

the very openness of the software

ensures rigorous review and testing,

bolstering security.

Still, one of the major concerns about

using open source software is the

perceived lack of security. The public

availability of source code for the

security components of a mission-

critical system is an uncomfortable

idea for those responsible for operating

these systems.

This line of thinking sounds reasonable.

If bad guys can access the source code,

it is easy for them to find a weakness

and compromise the system. Even

worse, if they modify the code and

succeed in getting those changes into

an official distribution of the software,

they could easily insert back doors

and Trojan horses into all systems

using that software. This leads to the

corollary: closed source software is

more secure, as its source code is

kept secret and only a few trusted

programmers have access to it.

In addition to a malicious act, account-

ability is an issue. Who will fix a security

problem if nobody is responsible for

the code or for addressing the problem

with the open source community?

This is a nightmare for those running

the system.

Safety in Numbers

Fortunately, it turns out these concerns

are not justified. In practice, we find

there is safety in numbers: source code

availability allows a large community

of developers to inspect and review a

system for security flaws. Key security

components like security libraries,

cryptographic algorithms, and authen-

tication and authorization subsystems

are attracting many developers to

look at, review and improve the code

for correctness and strength against

security attacks.

In some cases monetary rewards

are offered to further encourage

developers to find bugs. After several

high-profile flaws were found in

browsers, the Mozilla Foundation

began offering $500 for every serious

bug found by security researchers

in its open source software, which

includes the Mozilla Firefox browser.

Developers are also driven by fame:

finding a security weakness in a

complex system is a challenging task

that is recognized and lauded by

peers. In widely used software like

operating systems, or applications

with a large public interest such as

election software, developers are

even more motivated to verify the

system’s security, for the impact of

a security flaw is much larger – as is

the tribute for finding and fixing it.

Finding a security flaw in a system is

hard, even when the source code

is available. But to create an exploit

based on the flaw is even harder.

Buffer overflow is a common security

issue in server software written in

C or C++ and has been the root

of many exploits in the past. Buffer

overflow is caused by the unwary use

of static buffers in system calls from not

checking the amount of data that is to

be written into the buffer. If a malicious

user succeeds in putting a specially

prepared chunk of data outside the

buffer’s allocated memory space by

having the program overwrite the

Security: Secrecy Is Not the Answer

“

29

buffer, he can execute any code and

thus compromise the system. Locating

code vulnerable to buffer overflows

is relatively easy, as it follows some

common patterns. In contrast, using

this for an exploit requires thoughtful

preparation of specific input data,

which is very hard to do in practice.

Having a large developer community

distributed around the world leads to

very fast turnaround times for security-

related fixes compared to proprietary

software. It is not uncommon to find a

security fix to an open source product

published on the Internet just a few

hours after the problem’s discovery.

Moreover, large open source distribu-

tors like Red Hat and Novell/SUSE

have set up mechanisms to collect

and publish, in one place, security fixes

related to all open source components

these companies provide.

Closed But Not Necessarily Safe

There is historical evidence that

closed source software does not

necessarily result in more security.

In one prominent example, the voice

encryption algorithms of the GSM

standard – GSM is the world’s most

widely used mobile phone system

– were developed secretly (closed

source) but broken after being

reverse-engineered.

Another example is the electronic

voting system AccuVote-TS from

Ohio-based Diebold Election

Systems, the industry leader in U.S.

electronic voting systems. In January

2003 the source code was inadver-

tently made available to the public

from a file sharing (FTP) server.

Shortly thereafter, a research team

from Johns Hopkins University in

Baltimore analyzed the code and

discovered several significant security

flaws, among them the ability to cast

multiple ballots by a malicious voter.

Diebold responded that the election

process would prevent these flaws if

everyone adhered to it. The example

shows that the software itself is not

proof against fraud, and since the

source code is kept secret one has

to trust the software vendor to fix it.

Open Source: Smart Engineering

Computer security expert Bruce

Schneier notes that in the cryptography

world “…we consider open source

necessary for good security; we have

for decades. Public security is always

more secure than proprietary security.

For us, open source isn’t just a busi-

ness model; it’s smart engineering

practice.”14 That is why an open

source algorithm was chosen for the

AES (Advanced Encryption Standard)

in 2002 to replace the aging DES

(Data Encryption Standard). The

algorithm was selected after a three-

year global competition led by the

U.S. National Institute of Standards

and Technology; AES is widely used

in the commercial sector as well as in

U.S. federal agencies. The competition

required from the beginning that all

submissions be publicly disclosed

algorithms that were available royalty-

free worldwide.

As Whitfield Diffie, co-inventor of

public-key cryptography and chief

security officer at Sun Microsystems,

summed up in an article on ZDNet:

“It’s simply unrealistic to depend

on secrecy for security in computer

software. You may be able to keep

the exact workings of the program

out of general circulation, but can

you prevent the code from being

reverse-engineered by serious

opponents? Probably not. The secret

to strong security: less reliance on

secrets.”15

30

In a testament to its rising popularity, Compiere has

been downloaded over 630,000 times, making it the

most popular open source business application to date.

In February 2004, Compiere was voted SourceForge

Project of the Month and was one of the top 10 most

active projects on SourceForge, suggesting that this open

source alternative for the mid market is catching on.

GET TING ON THE DESKTOP
Open source has been slower to catch on in the desk-

top arena, where questions about functionality and

compatibility (with Microsoft Office) loom large. For

legions of office workers, office automation is their

lifeblood – the mission-critical system they need to

get their work done every day. If the system is not

easy to use, or documents from inside and outside the

organization cannot be shared and modified trans-

parently, work cannot get done.

However, there are signs that open source is beginning

to make inroads on the desktop. Just as Linux adoption

rates have grown over time, we expect open office

adoption rates to grow, albeit more slowly. Open

office systems are creeping into large organizations

through engineering departments. (See Sweet Spot.)

Governments and businesses are asking serious

questions about Linux desktops.

Open office technology is much more robust than even

three years ago. The leading contenders are OpenOffice,

an open source office suite (runs on Linux, Solaris

and Windows); StarOffice, Sun’s office suite (runs on

Linux, Solaris and Windows); and Sun’s Java Desktop

System, a more comprehensive package aimed squarely

at Microsoft Windows that includes StarOffice, Linux

and a host of open source desktop productivity tools.

The U.K.’s Office of Government Commerce has

signed a five-year agreement with Sun to make the

Java Desktop System the desktop solution for the U.K.’s

public sector organizations. Allied Irish Bank, one of

the largest financial services organizations in Ireland,

is planning to migrate 7,500 desktop users to the Java

Desktop System. Developing nations including Brazil,

China, India and South Korea are promoting the use of

OpenOffice, which, among other things, is available in

many more languages than proprietary office offerings.

In related moves, HP is one of the first major PC

makers to offer Linux PCs with OpenOffice, which

it began marketing in Asia in March 2004. The Open

Source Development Labs, a non-profit organization

advancing open source software, has launched a

formal initiative to get Linux on the corporate desktop.

The focus of its Desktop Linux Working Group, which

includes HP, Sun, IBM, Intel, Novell, Red Hat and

OpenDesktop.org, is to examine end-to-end Linux

solutions as well as interoperability with other operating

systems used in business.

“I think we are going to see an enormous movement

to Linux on the desktop,” observes Bill Koff, vice

president of CSC’s Leading Edge Forum. “Just as

organizations have gotten comfortable with open

source software in their enterprise infrastructure, they

are going to get more comfortable with open source

on the desktop.”

Still, the office-desktop arena will be a tough nut to

crack for open source given the entrenched base of

Microsoft Office and Windows users. But the alterna-

tives are there and gaining a toehold.

As organizations consider their IT strategy, they need

to remember that open source offers a viable option,

not just in the back office but in mission-critical envi-

ronments. Consider the pros and cons. To be sure,

different applications will have different requirements

for scalability, throughput and reliability. For some, an

open source alternative will fill the bill; for others, it

will not. But clearly open source is doing the job today

in many large-scale, mission-critical applications and

will continue to do so as open source technologies

are enhanced. Open source is open for business, and

smart organizations will shop open source options for

critical business needs.

“Just as organizations have gotten

comfortable with open source software

in their enterprise infrastructure, they

are going to get more comfortable with

open source on the desktop.”

31

S W E E T S P OT:

Open Source Yields Targeted Savings

Although there are mixed reports about cost savings

with open source software, organizations are realizing

major savings in targeted areas, and these areas will

continue to expand. As open source software moves

into higher levels of the software stack, there are bigger

savings opportunities. Increasingly, software and

appliance vendors are embedding open source soft-

ware in new products for cost savings and other

advantages. (See Invisible Man.) And as more open

source software is created and used, the potential for

savings only expands.

The core of the open source savings proposition is

no software license fees, reduced hardware costs from

commodity hardware, and less unplanned downtime.

Even if open source software is not deployed, it can

be used as a powerful negotiating tool to lower pro-

prietary software license fees and support charges.

Of course, costs must be examined comprehensively

and on a case-by-case basis to get an accurate picture

of the savings potential of open source software. Costs

may decrease in one area and increase in others. What

you save in license fees may be offset by increased

technical support, training, consulting and other costs

outside the bounds of IT. And unless it is a new project,

the cost and disruption to transition from current

application packages to open source alternatives may

be prohibitive.

That said, significant opportunities exist for saving

with open source software. In the quest to do more

with less, organizations need to understand how these

savings opportunities apply to their own operations.

Aaron Fuller, president of CSC’s Defense Mission

Engineering and Integration division, observes, “This

is as true for defense enterprises as it is for commercial

enterprises. Open source software and open systems

architectures offer dramatic opportunities for im-

proving the cost effectiveness of military systems.

“The post-Cold War post-9/11 international war on

terrorism has focused military systems on joint and

coalition operations in which weapons systems and

troops from several nations are quickly assembled

to form new military enterprises. The ability of these

weapons systems and troops to work together is con-

strained by their incompatible computers and software

designed as proprietary single-use solutions.

“Open source software and open architectures offer

affordable implementations of interoperability that

permit coalition military partners to work together

as one unified military enterprise. Open source and

open architectures are one of the most powerful com-

ponents of this revolution in military affairs. The

defense budgets of the United States and its friends

and allies are not increasing significantly to pay for the

high priority placed on interoperability. Open source

and open architectures leverage technology to make

interoperability affordable within tight budgets.”

In both government and commercial environments,

organizations face tight budgets and must maximize

limited resources. Open source is an important option

to consider. Three targeted areas for open source

savings are the software stack, scale operations and

software development.

SAVINGS IN THE STACK
By examining the software stack from a cost point

of view, organizations can find savings opportunities

lurking inside many areas of the business. Of course,

every business scenario is different; each organization

must make its own calculations to understand where

the savings opportunities lie. Here are some areas to

explore.

Platforms – Linux in the Data Center
There is an opportunity to reduce platform acquisition

costs by using Linux in the data center; not surprisingly,

this opportunity varies by workload. Until recently,

32

Linux was only appropriate for applications that didn’t

need to scale to any large extent, or could scale horizon-

tally (i.e., by adding servers). However, current versions

of Linux now support sufficient vertical scaling

(eight CPUs in a server is considered reasonable) to

cater to most real-world workloads.

Horizontal scaling (assuming the application supports

it) provides high availability by default, allows lowest-

cost commodity servers to be used, and minimizes risk

around sizing. Many application Web servers work this

way today, adding more process threads to the mix to

meet workload demands. (See Serverware on next page.)

Linux is obviously a good option here as there are no

horizontal scaling limitations. On the downside, hori-

zontal scaling involves supporting multiple application

and operating system instances (instead of one), has a

connectivity overhead (multiple connections required

to the network and external storage), and may have

software license penalties for any packaged software that

is licensed on a per-server basis. This is a balancing act

that needs to be assessed for each project.

That said, for many types of workloads horizontal

scaling with Linux is a good approach. A horizontal

approach can save big money in capital and operating

system costs compared to vertical solutions on the

market today. The ability to massively scale Linux

horizontally without additional license fees can yield

significant savings over the long run. This also puts

downward pricing pressure on vertical solutions.

Vertical scaling is more technically straightforward

as there is one application and one operating system

instance to support, one connection to the network,

one connection to storage, one set of licensing terms,

and so on. However, there is significantly more risk

around sizing. You may need to replace the server

with a larger one if it is undersized

or if unanticipated growth occurs,

forcing the organization to adopt

larger servers with significantly

higher unit cost.

Online travel services company

Orbitz took the horizontal scaling

approach (hundreds of Linux PCs)

to undercut established competi-

tors who were following a vertical

scaling approach (mainframes).

The horizontal, open source ap-

proach enabled Orbitz to create an

innovative way to search for flights

that was both faster and cheaper.

Orbitz was able to bypass a key

middleman in the ticket booking

process; this, plus its lower IT

costs, are at the heart of its business

strategy to be the low-cost provider

of the lowest air fares.

A large energy company offers

another example of how a hori-

zontal scaling approach can yield

significant savings when coupled

with open source software and com-

modity hardware. The company

0%

5

10

15

20

25

30

35

40

45

50

Pe
rc

en
ta

ge
 o

f R
es

po
nd

en
ts

Save 10%
or less

Save 11%
to 50%

Save 51%
to 75%

More than
75%

None

In a survey of over 500 development managers conducted in December 2003, most

(62%) expect some cost savings from implementing Linux, though the amount

varies. More than 11% expect a dramatic cost savings of over 50%, while 23%

expect a more modest savings of 10% or less; 38% expect no cost savings. The

survey asked, “If your company were to move to Linux, how much cost savings

would you guess there would be?”

Database Development Survey 2004: Winter, © 2004 Evans Data Corp.

Source: Evans Data Corporation

COST SAVINGS OF LINUX

33

figures it saved $50 million in upgrading its high-

performance computing center for advanced seismic

research from specialized hardware running Unix to a

cluster of commodity hardware running Linux. In the

center, the company operates over 1,000 Linux (on

Intel) systems, one of the most powerful commercial

Linux operations in the world. The Linux systems are

deployed using an open source grid engine from Sun.

The company estimates that by moving to the Linux-

based cluster it reduced its yearly software mainte-

nance fees 93 percent, from $3.5 million to $250,000.

The initial cluster deployment provided one teraflop

of supercomputing power and has since been scaled

to eight teraflops by simply adding more machines

and processors.

With the cluster, processing that took 28 days now

takes one day (with the ultimate goal of analyzing

seismic information in near real-time). The time savings

means the company gets a faster, clearer picture of

underground areas offshore it is exploring as poten-

tial oil drilling sites. Given that it costs on the order of

$50 million to drill an offshore oil well, it is important

to get the location right. Being able to produce the

images faster – there is significant number crunching

involved – means the exploration team can make

adjustments and zero in on a candidate drilling site

much faster. This capability could easily dwarf the

$50 million in savings attributed to open source.

If commodity hardware is already in place, savings

with Linux are less clear, coming strictly from licensing

and support costs (not hardware). Because support

packages for Linux can cost more than licenses and

support for Windows or Unix, organizations might opt

for a non-commercial Linux distribution ($0 price

tag). However, they would forgo the integrity and

security of the commercial distribution, which could

be a costly tradeoff.

In terms of performance, for certain kinds of work-

loads Linux may yield better performance than

Windows, a more feature-rich operating system that

can slow performance. “In our experience, performance

increases with Linux can be on the order of 20 to 30

percent, but again, this is very workload dependent,”

emphasizes Tim Dooley, technology strategy manager

in CSC’s Global Infrastructure Services architecture

team in the U.K.

Serverware
Web Servers. In general, as you move up the stack

costs increase, making the savings potential greater.

In the area of serverware, Web server software is the

low-hanging fruit for open source savings. Savings

accrue from low to no acquisition costs, which can

amount to millions of dollars in large organizations.

“If you are spending more than $0 to acquire commod-

ity Web server software, you are spending too much,”

asserts Paul Gustafson, director of the Leading Edge

Forum. Apache has become mature enough and

popular enough – running two-thirds of all Web servers

– to make this claim.

Of course, if the organization has sophisticated Web

server needs, it may require a proprietary Web server

that provides more advanced functionality (e.g., Zeus),

is part of a wider integrated framework, or has

independent software vendor (ISV) support. But for

most organizations’ needs, Apache is suitable. Apache

is an entrance strategy, best for new systems where

there is no sunk cost.

Since Apache runs on several operating systems, there

is no need to convert to Linux to realize Apache

savings. However, Apache deployed on Linux yields

the highest integrity and security, key factors for Web

servers exposed to the public.

Application Servers. The opportunity for open source

J2EE application servers is expanding from smaller,

non-critical applications to mission-critical systems,

Intel reports that according to analysts,

more than 90 percent of Linux server

revenue and shipments in 2003 were

on Intel-based systems, and Linux server

shipments were 25 percent greater than

all Unix server shipments combined

during the same time period.

34

which used to be the domain of the established

proprietary products like IBM WebSphere and BEA

WebLogic. The stability and maturity of the open source

application server JBoss, as well as its popularity among

developers, make JBoss a valuable and low-cost

alternative.

Many independent software vendors are using open

source J2EE application servers as a low-cost develop-

ment platform for their products (e.g., BroadVision

and SeeBeyond). ISVs are supporting both open

source and proprietary J2EE environments, though

interestingly, their software often runs best in the

open source environment. Expect this development

trend to continue as a way to lower software costs.

Some large companies have already put JBoss on

their list of recommended application servers. CSC

has helped several clients develop and deploy mission-

critical applications on JBoss. One of these was the

data exchange system for the Danish Ministry of

Finance; CSC estimates it saved roughly 20 percent

in development and deployment time overall by using

JBoss and other open source software. (See Mission

Critical.)

Another is a portal system CSC developed for the U.S.

Navy that uses JBoss, Jetspeed (portal framework) and

Struts (application framework). The Navy is intent

on using open source software to reduce development

costs and time; it estimates it could save over one

million dollars in licensing fees, and that it saved six

months of development time (initial development took

12 months). By not having to pay a per-seat license fee,

which is common with proprietary portal software, the

Navy was able to realize significant savings; these savings

will only grow as the portal scales to more users.

Support was also a factor; with the open source

community you can find out about new features and

how to implement them, and get new features imple-

mented by the community. This happened in the

This portal is an open source alternative to the current Navy Enterprise Portal, which is based on

commercial software. The open source Navy Enterprise Portal, a full-service portal, saves development

costs and time while providing enhanced functionality.

Source: U.S. Navy

35

portal project with a request to add portlet category

filtering to Jetspeed.

Because of the open source software and standardized

interfaces, the open source portal makes it quicker

and easier to implement new functionality and appli-

cations than a similar portal the Navy is also using

that was built with proprietary software and uses

some proprietary features. The Navy’s Fleet Numerical

Meteorology and Oceanography Center (FNMOC),

which developed the open source portal, has found

the process of converting legacy applications, and

developing new ones, to be much faster using the

open source portal. Examples of converted applica-

tions include the Optimum Path Aircraft Routing

System (OPARS), Search and Rescue (SAR) aids, and

MyWxMap, an application that allows users to select

areas of interest and download weather maps for

those areas.

The open source portal was created by FNMOC to

disseminate weather and ocean data to ships. FNMOC,

the Navy’s weather center, runs complex models and

produces a variety of outputs including raw data about

weather conditions, analyses to guide search and

rescue operations, and optimal flight paths for Navy

aircraft. In the past, requests came to FNMOC via

e-mail or phone; now people can make requests from

their browsers and have the information in minutes.

The FNMOC portal attracted the attention of Task

Force Web, the Navy organization charged with imple-

menting the Web-Enabled Navy initiative, as an

alternative to the commercially-based portal it was

implementing. The open source portal is now viewed

as an attractive alternative to the commercial portal

because of its lower cost and streamlined development

path.

Bruce Gritton, FNMOC’s CIO, said that the open

source portal, and peripheral software such as the

open source Navy Enterprise Single Sign-On (NESSO)

and a subscription-based data distribution Web service

called RuleBot, have been critical in fostering the

rapid development required to allow FNMOC to

modernize its internal processes and to become a

ForceNET Development and Integration node.

As a testament to the portal’s success, CSC is at work

on a new Navy project that is the first project to be

based on the open source portal. CSC, in partnership

with the Navy, is implementing a Web-based applica-

tion for monitoring compliance within the Navy with

Information Assurance Vulnerability Alerts (IAVAs)

issued by the Naval Computer Incident Response

Team (NAVCIRT). Using the open interfaces provided

in the open source portal, the team completed this

project months earlier than would have been possible

using the commercially-based Navy Enterprise Portal.

Again, cost and speed were key factors in basing the

project on the open source portal.

Databases. Database software carries a hefty price tag

– several million dollars for an enterprise-wide license

is not unusual – so this is an area of opportunity for

significant savings in acquisition costs. Open source

databases have existed for years, but organizations

and application vendors have been reluctant to adopt

them. One reason could be the business-critical nature

perceived with the database: it houses the company’s

core business data. Others are the investment already

made in existing databases, and the complexity of

introducing yet another database into the organization.

That said, open source databases have improved and

are gaining ground. (See Market Force.) Though open

source databases are less likely to displace existing

proprietary databases, they are a viable option in other

areas, particularly new applications. In a March 2004

study on open source databases, Aberdeen Group

reported over 10 million open source database instal-

lations worldwide, primarily in small- to medium-size

business (enterprises or workgroups with less than

$25 million in revenue).16

According to Aberdeen, one of the key opportunity

areas is decision support. Aberdeen identified what

open source database users value most: the ability to

handle wide variations in load and to process both large

objects (or text) and relational data. Less important are

ultra-high performance, extreme scalability in numbers

of users or amount of storage, and administrative

ease-of-use.

36

New entrant vendors such as Metapa agree that

customers are looking to unleash the power of open

source and commodity hardware to tackle business

problems such as decision support. Metapa recently

brought to market an open source cluster solution

that focuses specifically on solving business problems

associated with data warehousing. The Metapa Cluster

DataBase allows a cluster of commodity-priced hard-

ware to be used to bring significant gains in perform-

ance and scalability to the warehousing problem. By

building on Linux and PostgreSQL, Metapa believes that

enterprises will now be able to deploy data warehousing

and business intelligence systems at a fraction of the

cost of traditional systems.

Typically these database cluster systems are deployed

at the edge of the enterprise, which is where many Linux

deployments are currently concentrated. Often the

clusters are used where traditional systems are too slow

and inappropriate given today’s open source options

and clustering with commodity-priced blade servers.

“What we are not seeing yet are deployments of these

systems at the heart of the enterprise dealing with

mission-critical applications and data,” says Dave

Powell, CEO of Metapa. “Enterprises are using these

systems at the edge to learn about them and gain con-

fidence with them. This is very similar to customer

behavior during the migration towards client-server

systems and, more recently, Internet-based systems.”

Metapa has deployed its Cluster DataBase as part of

a customer portal for managed firewall services pro-

vided by one of the largest U.S. telecommunications

companies. The telco selected the open source-based

system due to its scalability and performance, along

with the obvious cost advantages that accrue from

open source and commodity hardware.

CLIENTWARE
Desktops. As mentioned earlier, open source software

such as OpenOffice is being considered more and more

for the desktop office productivity suite. OpenOffice

offers savings on several fronts, but compatibility with

proprietary systems – namely Microsoft Office – is a

major obstacle to widespread adoption today, making

any open source office suite a future opportunity for

savings.

An open source office suite yields savings from lower

acquisition costs and no forced upgrades. In large

organizations, office suite software can cost on the

order of $300 per seat – or $3 million in an organiza-

tion of 10,000 people. That is real savings when going

to acquisition costs of $0.

A different kind of savings comes from not having

to upgrade software every 18-24 months, which

demands a significant investment of time and money.

Upgrades are not only disruptive, but often they are

not needed. By one estimate at least 40 percent of

people in a typical organization can function effec-

tively with office software that is “good enough” – i.e.,

that has basic functionality but not all the bells and

whistles of a full-featured product.

However, a limitation that cannot be overlooked is the

lack of a full productivity suite that is open source.

Although OpenOffice is an open source alternative to

Microsoft Office, there are not comparable alternatives

for other tools such as Microsoft Visio. Moving to an

open source desktop would require adopting alterna-

tive tools (maybe not even open source) for these

capabilities, triggering significant associated costs,

risk and disruption. Again, compatibility is an issue.

This issue will take time but it is at the top of the list.

As OpenOffice addresses compatibility, the open

source office suite will provide a major opportunity for

savings. To be fair, compatibility is a challenge for both

the open source community and the software vendor

community. There are compatibility issues between

open source software and proprietary software, as well

as between various flavors of proprietary software

(including different releases by the same vendor).

Although compatibility issues cannot be denied, they

will no doubt be overcome with time.

Specialized Workstations. With engineering work-

stations or specialized clients such as point-of-sale

systems, savings and increased productivity can be

achieved by switching from proprietary Unix work-

stations to Linux (on Intel) workstations, and by

consolidating multiple machines onto one Linux box

running multiple operating systems (using virtualizing

technology).

37

A Linux engineering workstation project at a large

telecommunications company is yielding significant

benefits. In partnership with CSC, the company has

been replacing 4,600 desktops and proprietary Unix

workstations used by its R&D design engineers. In the

first year of the effort, the company has eliminated over

1,500 secondary desktops and replaced a little over

1,000 workstations with Linux desktops – 35 percent of

the total after the eliminations – and estimates they have

saved $890,000 in the process so far. The company

estimates the three-year effort will yield $4.1 million

in total savings.

The company created a unique workstation consisting

of a Linux host operating system and a Windows 2000

guest operating system (run using VMware), supple-

mented where necessary with server farms. This

allowed engineers to design new products on Linux,

existing Unix and Windows environments from a single

Intel-based computer. This solution bridged legacy

product designers with new products, providing work-

force flexibility and agility.

The project is part of a broader effort to increase R&D

efficiency and effectiveness. “Our goal is to boost

designer productivity,” said one of the company’s IT

leaders responsible for engineering R&D. “We wanted

our design engineers to have a more flexible solution

that wouldn’t require giving them a whole new desktop

environment every time they changed projects.”

The project has been successful, boosting design pro-

ductivity and converting die-hard Unix engineers into

Linux fans. Said one engineer, “We designers love the

reduction in load-build times. They’re 10 times faster,

taking minutes on the Linux machine instead of hours.”

Observed the IT leader: “When people say open source

is not ready for prime time, I disagree. In our R&D

environment, it is ready for prime time.”

In an engineering environment, the major concern is

application availability and delivery. Engineering

applications tend to be highly specialized, and many do

not support Linux. So the application may prevent

realizing the full savings from open source, unless and

until the application is ported to Linux.

This porting problem was solved at the energy

company (mentioned earlier) by having the software

vendor port its applications, which the company was

using for sophisticated visualization, to Linux. The

company is in the process of replacing 1,500 aging

Unix engineering workstations with Linux commodity

systems. The three-year replacement effort is expected

to save $25 million as workstations costing from

$30,000 to $300,000 are replaced with $20,000 boxes.

As at the telecommunications company, part of the

savings comes from the consolidation of secondary

office PCs, since some of the Linux systems also run

Windows and its office software.

SAVINGS IN SCALE OPERATIONS
Open source software presents a major savings oppor-

tunity in high-volume situations like manufacturing

and services businesses, where savings accrue from

millions of units involved.

When a manufacturer sells millions of PDAs or phones

with embedded Linux, the savings multiplier can be

enormous. Ditto for a services company that supports

millions of desktops running open source software.

The total cost of ownership (TCO) of the open source

software to the manufacturer or services company is

greatly reduced because the cost savings are felt across

millions of instances; this translates to lower costs for

the consumer or end user. CSC, for example, manages

one million desktops and 40,000 mid-tier servers as

part of its outsourcing business. In contrast, a typical

large organization may have 50,000 desktops and 3,000

servers; TCO is constrained by this smaller base.

Single-function devices and consumer products such

as bank ATMs, PDAs and mobile phones run well

on embedded Linux, which requires minimal system

resources and support and adds very little cost. Linux

“When people say open source is

not ready for prime time, I disagree.

In our R&D environment, it is ready

for prime time.”

38

helps keep the price of consumer products down and

speeds overall product development because less new

software development is required.

Motorola, for example, uses embedded Linux in

products such as cellular phones to keep manufac-

turing costs down and to speed time-to-market by

taking advantage of already available open source

software it doesn’t have to develop itself. (See Invisible

Man.)

SAVINGS IN SOFTWARE DEVELOPMENT
Significant savings can be realized from open source

software development based on reuse and consistency.

The telecommunications company mentioned earlier

is moving to an open source collaborative model of

software development in R&D to help drive efficiency.

As it develops new products, the company, which

designs hardware and software for enterprise and

carrier markets, is aiming to consolidate more than 100

different proprietary platforms down to a small,

standard set. The company expects to realize signifi-

cant efficiencies in software development and field

maintenance by eliminating duplicate functionality.

To do this, the company is bringing R&D together

as a collaborative development community à la the

open source model. This will enable more reuse and

integration of software components across products.

The savings from collaborative development can be

seen again and again. CSC jump-started the develop-

ment process for its VP/MS Model Manager product

by basing the product on Eclipse, the open source inte-

grated development environment. (See Market Force.)

The result was faster time-to-market by not having to

reinvent the wheel, and reduced maintenance costs.

After CSC contributed plug-ins from the VP/MS Model

Manager project to the core Eclipse platform, CSC

was relieved of having to maintain them; the Eclipse

community takes care of that.

Another example of savings in software development

is the Insight system CSC created for the U.S. Navy to

manage the operating environment of a large-scale,

distributed, real-time computer system. Given that the

development schedule and other constraints would

not permit developing the solution from scratch,

the team mined the open source collection in

search of component solutions. The result was the

integration of approximately 150,000 lines of open

source code – ranging from tools and network services

to configuration management and the graphical user

interface – that saved millions of dollars in software

development and met the 10-month development

schedule.

A CLOSER LOOK AT COSTS
In making the decision to use open source software,

organizations need to understand several costs that

are overlooked or not well understood: switching costs,

legal costs, providing resources to the open source

community, and the viability of the open source

project long-term.

What does it really cost to switch your proprietary

platform (or software suite) to an open source plat-

form? It is fairly straightforward to determine savings

from acquisition costs but much more complex to

quantify migration costs, disruption to the business,

training and ongoing support for the new platform.

A detailed TCO analysis is needed. It must be noted

that no matter how honest a person or organization

is, TCO assumptions can be made to be optimistic

or pessimistic; an objective TCO is hard to come

by. The Total Cost of Ownership table on pages

40-43 offers guidance for doing as objective a TCO as

possible.

Because open source uses a different support model

based on a global community, organizations may

decide they need to staff a person(s) to serve as the

front line of support to the open source community.

Finally, many organizations may ask: What is the

long-term viability of the open source software I am

using? There is a risk associated with relying on a

volunteer community rather than a vendor for a soft-

ware product (though some will argue the risk is no

different, in fact, than relying on a vendor). Software

fixes and enhancements may not be received in a timely

or dependable manner; commercial business models

for distributing and supporting open source software

are still emerging. Also, what are the implications

39

Volunteer
consultant(s)

Incompatible
skills &

experience

Incompatible
tools

Curriculum
adjustment

Disruption during
migration

Hiring/training
new staff

Paid
consultant(s)

Making
changes

Burnout

Mindshare &
(dis)comfort

Sale price

Expected
other costs

KEY

Migrating
data

Installation

Meetings

Soft Cost

Evaluating &
revising

Frustration

Churn

Research &
experimenting

Opportunity
costs

Unexpected
costs

Maintenance &
troubleshooting

Professional
development

Hard Cost
Tech support

TOTAL COST
of OWNERSHIP

Ongoing Costs

People

Supporting
Learning

Planning &
Deployment

Acquisition

Total cost of ownership for an information system is complex,

involving not just acquisition and deployment costs but

costs for support, training, skills development, disruption

during migration and staff churn.

Source: Developed by the Northwest Regional Educational Laboratory,

Portland, Oregon. www.netc.org & www.nwrel.org

of the SCO allegations or other possible intellectual

property violations we don’t yet know about?

Organizations need to take a hard look at where the

opportunities for open source savings lie. The sweet

spots will vary by organization, but they are there.

Managers need to get informed and get started on

the open source agenda. Otherwise they risk leaving

money on the table.

TOTAL COST OF OWNERSHIP

http://www.netc.org
http://www.nwrel.org

40

Total Cost of Ownership and
Open Source Software

Total Cost of Ownership analysis varies from enterprise to enterprise. This table, based on several TCO models, summarizes the

most important TCO components to consider when evaluating open source software. Enterprises need to take a comprehensive

view of TCO and factor in other measures (e.g., technical advantages, security, vendor lock-in, long-term viability of the software,

opportunity costs) to determine the full business value of open source software in their environment.

Hardware Costs

Purchase Price

Hardware Maintenance

OSS opens the door for more pro-

gressive use of cheaper commodity

hardware (Intel running Linux) instead

of proprietary hardware (RISC running

Unix). For some workloads this can

yield significant hardware savings, which

are magnified when horizontal scaling

is deployed.

Savings also accrue from commercial

applications moving to a commodity

platform. Applications such as SAP,

when moved from a proprietary

platform to Intel/Linux, have yielded

savings of 30 percent and more.

TCO Component Open Source Software (OSS) Implications Comment

This discussion is very much a point in time and subject

to change. Sun, IBM and HP have all significantly reduced

the prices of their commodity RISC/Unix server product

lines to more directly compete with Intel-based servers;

this was likely fostered, in part, by competition from

Linux and the fact that the vendors were seeing work-

loads drift from their platforms to Intel/Linux. The price

per CPU for RISC servers and Intel servers has become

very close in this commodity space. So from the simplistic

perspective of CPU count, there are fewer opportunities

for hardware cost savings.

This represents a change from even two years ago. Then,

and stemming back to the early days of Linux, there was

a significant difference in costs between RISC and Intel

platforms. But with competition and commoditization, that

gap has narrowed considerably. Note: Even proprietary

hardware vendors like Silicon Graphics are embracing com-

modity platforms, fueling the commoditization movement.

In addition, some vendors have released a new lower-cost

server line that competes even more directly against Intel/

Linux, such as the V series from Sun. However, commodity

Intel CPUs will continue to improve in price/performance

at a far greater rate than RISC CPUs. Therefore, cost

analyses should start comparing equivalent processing

capacities, not number of CPUs, which would swing the

balance much more in favor of Intel/Linux.

41

TCO Component Open Source Software (OSS) Implications Comment

Direct Software Costs

Purchase Price

Support and Maintenance

License fees do not apply with OSS;

however, costs are incurred for distri-

bution (i.e., media fees) and support.

Typically, proprietary software carries

a high purchase price and comparatively

lower ongoing maintenance costs.

The reverse is true for OSS where a

commercially supported distribution is

adopted: there are low to no acquisition

costs but significantly higher ongoing

maintenance fees.

Since it is strongly recommended that

enterprises purchase a commercial

distribution of Linux (e.g., Red Hat or

Novell/SUSE), Linux may be more

expensive than Windows. It is, of

course, possible to show savings with

Linux if a non-commercial distribution

is used, but costs will surface elsewhere

(e.g., support).

Linux adoption can foster significant savings

elsewhere, notably by moving from Unix-based

software on RISC hardware to Linux on Intel

hardware, which can reduce the number of

CPUs required and thus license fees for software

that is licensed on a per-CPU basis (e.g., Oracle).

The increased Intel performance can require

fewer CPUs for the same throughput. Software

vendors could, however, minimize or eliminate

this advantage – which today can be on the

order of 30 percent savings – by changing their

pricing structure.

Beyond Linux, savings can accrue from adopting

other OSS (e.g., Apache, MySQL) instead of

proprietary software. This yields significant savings

in license fees. Enterprises can download the

OSS or in some cases choose to buy a commercial

distribution. Note that most OSS is not as

volatile as Linux so enterprises may not need

commercial distributions; the OSS is generally

stable enough for enterprise use.

Overall, OSS has increased competition and

put downward pressure on ISV and software

vendor pricing.

continued on page 42

42

continued from page 41

Indirect Software Costs

Administration of Licenses

TCO Component Open Source Software (OSS) Implications Comment

Usually, it is not necessary to track the

number of software licenses with OSS

to ensure the legality of all instances

deployed. However, you still need to

know where the software is deployed for

security and patching purposes. That said,

OSS removes the burden of having to

stringently monitor software deployment.

It is important to have a strategy for

which components should be used in

the organization. This strategy must

be evaluated regularly with proficient

know-how of OSS components

available.

Software audits can be quite costly. It is no small

task to create and administer auditing processes

that allow you to know exactly, at any time,

which user is working with what software across

the entire enterprise.

Staffing costs mirror supply and demand.

Early on, Linux professionals commanded

a higher rate than Windows professionals

because Linux professionals were in

short supply. With the spread of Linux

and Linux professionals, their fees are

now comparable to that of Windows

professionals.

Staffing costs depend heavily on the skills of the

company’s IT staff. For example, if a company

has been running Windows as a strategic platform

for a long time and has no Linux-experienced

staff, it may be quite expensive to switch to Linux,

though it may pay off eventually. A company’s

pool of available talent plays a major role in

deciding what software suits the company best.

Staffing Costs

Project Management

Systems Engineering/Development

Systems Administration

Vendor Management

Administration (e.g., Purchasing)

Training

43

Support Costs

Installation and Set-Up

Troubleshooting

Support Tools, Materials

Patching

Peer Support

Casual Learning

(manual, trial-and-error)

Formal Training

Application Development

Generally, Linux is less of a target to

malicious hackers than Windows and

thus requires far fewer security patches

than Windows, but probably slightly

more than Unix. Also, because Linux is

a leaner operating system than Windows

is today, Linux requires fewer other

patches but, again, probably slightly

more than Unix.

A commercial distribution of Linux is

well-tested before its release and has

tools for automatic patching. If you are

not using a commercial Linux distribution,

it is hard to keep up with patches because

there are so many changes made on a

rapid basis.

Although installation and set-up histori-

cally have been more difficult with OSS,

this is no longer the case with the major

OSS products that come with easy-to-use

installers. Troubleshooting costs may be

lower with OSS (or not).

Training costs may be higher depending

on the OSS in question.

Compared to older versions of Windows,

Linux environments have required less effort

for troubleshooting and dealing with security

patches, especially given the automatic patching

that is available in a professional and efficient

manner for commercial Linux distributions.

Microsoft says this has changed with Windows

XP and Windows Server 2003, though the

company has released many patches for these

operating systems.

Tools exist for automatically patching Linux

and Windows; CSC uses these tools, which

are widely available to enterprises today.

Community support in the open source environ-

ment is typically very good for the major OSS

products. OSS newsgroups can often respond

to problems faster than commercial vendors,

though there is no contractual requirement for

them to be that responsive.

Some proprietary software products have become

so widespread that they are the de facto standard

(e.g., Microsoft Office). They are well-known

by most people and thus generate few support

costs, generally only when upgraded. However,

equivalent OSS may cause disruption in displacing

commonly used products.

TCO Component Open Source Software (OSS) Implications Comment

Downtime The modularity of Linux can allow a

very lean build to be deployed, which

in turn can enable more stability and

thus higher availability than a Windows

environment. (Note that Unix environ-

ments are also fairly stable.)

Unplanned downtime can be as much as

50 percent of TCO. Nevertheless, downtime

is often not part of a TCO analysis because its

costs are difficult to quantify.

44

S O F T WA R E R E V O L U T I O N :

Open Source Accelerates Development and Incubates New Ideas

The new software development norm is to collaborate

and leverage: collaborate with developers in the open

source community and leverage open source soft-

ware. Rather than work within the confines of the

organization and create everything from scratch,

developers should use readily available open source

tools and components to accelerate the development

process, and tap the open source community for

support and inspiration.

The open source community is an incubator for new

ideas and innovation. The community socializes the

idea, engaging the audience (developers) in dialog and

development to create a concept (code) that addresses

a particular question or challenge. The dynamic is

just like a software development lab: pursue techni-

cally challenging or important ideas with an eye

towards commercial application. But in the open

source environment, the community can release an

idea on its own, unbeholden to corporate budgets and

angel investors. This is revolutionary: community-

based software development that accelerates and

innovates the development process.

There are four models of community-based development:

leveraging open source in software development

bootstrapping a new product

extending an existing product

forming a company to commercialize a product

LEVERAGING OPEN SOURCE IN
SOFTWARE DEVELOPMENT
The leverage model is about using open source soft-

ware to get the most out of your development effort.

One example is CSC’s Proactive Service Management

solution, which used open source software for core

functionality and for development tools. The open

source software used was chosen because it worked

(solved the problem) and was easy to use (people

already knew how to use it or they could learn it

quickly). In addition, it was free (no purchase costs).

PSM helps companies manage complex networks of

remote devices in real time. Using PSM, the original

client, a large U.S.-based broadband carrier, automated

90 percent of the telephony surveillance function,

yielding millions of savings in cost avoidance, and

reduced mean time to repair (MTTR) from 48 hours to

four minutes, largely by automating 75 percent of a

technician’s research activities and making this informa-

tion available to telephone service representatives, who

can fix problems on the spot when a customer calls.

Approximately 25 percent of the PSM solution used

open source software; there were three chief players:

MySQL, PHP and Expect.

MySQL was used to store data for reporting purposes.

Originally, MySQL was chosen as a temporary solu-

tion but it stuck because it performed well, and the

overhead of going to a more heavy-duty proprietary

database did not make sense. “This was a case where

MySQL was ‘good enough.’ It fit our needs for a data-

base exactly,” says Bob Solis, PSM program director.

In addition to storing data, MySQL was used for

THE CATHEDRAL THE BAZAAR

The lines are blurring between traditional software development

(closed/“cathedral”) and open source development (open/

“bazaar”), fostering growth and innovation in software R&D.

45

integrating various aspects of the PSM suite, scaling

the application, and logging.

PHP was used for the front-end decision support

system, delivering browser-based pages of reporting

information that showed the health of every node in

the system – vital data for operations company-wide.

In the developer’s toolkit, Expect (an open source

scripting language) was used to automate interaction

with various telephone switches (e.g., AT&T 5ESS) and

cable boxes. Many of these devices do not have standard

application programming interfaces, or if they do they

were cost-prohibitive, so Expect was used to create

scripts to interact with the devices via their command

line interfaces. This was an important breakthrough,

because it meant the devices could be monitored and

controlled automatically and proactively, eliminating

what had been a manual effort and identifying problems

before they occurred.

“Here open source software was used because there

was no other way to get the job done other than to buy

prohibitively expensive APIs,” explains Solis. The result

was a creative, powerful innovation. Automation of the

telephony surveillance function improved customer

service and drove down business costs dramatically.

Other open source tools in the developers’ toolkit

included Apache, Perl, Log4J, CVS, Samba, Jitterbug

(defect tracking), DBTools (data management free-

ware), Emacs (editor freeware) and the GNU Compiler

Collection (GCC).

Another example of open source leverage in software

development is H.E.A.T., CSC’s security tool for assess-

ing information system vulnerabilities across an enter-

prise. H.E.A.T. (Hydra Expert Assessment Technology)

was developed using several core open source compo-

nents, which saved at least three months of development

time in a 13-month initial development effort.

“H.E.A.T. would have been developed even if we hadn’t

used open source software, but it would have taken

much longer and the product would not be as robust,”

states Jason Arnold, H.E.A.T. program manager.

Since H.E.A.T. is a security tool, having inherently

secure code is critical, which open source software

helps ensure because so many people review it. (See

Security sidebar on page 28.) Other reasons for shying

away from using proprietary software were questionable

functionality (you can’t see the source code to know

exactly how the software works and how well it inte-

grates), licensing issues (CSC sells H.E.A.T. under its

own license), and cost minimization.

CSC’s Proactive Service Management solution, which pro-

vides a range of offerings for managing complex networks

of remote devices in real time, uses open source software

for core functionality.

H.E.A.T. (Hydra Expert Assessment Technology) is a security

tool developed by CSC for assessing information system

vulnerabilities across an enterprise. H.E.A.T., which uses

many open source software components, performs detailed

high-speed analyses of large, complex networks using a

strategy that mirrors the unrelenting techniques of sophisti-

cated computer criminals. From a development perspective,

using open source software helps make H.E.A.T. not only

more robust but also more secure.

Source: CSC

Source: CSC

46

Key open source software in H.E.A.T. includes: Apache,

MySQL, OpenSSL, mod_SSL (Apache interface to

OpenSSL), “John the Ripper” (password cracking),

Blowfish (encryption algorithms) and GD Graphics

Library (report graphics). Using open source software

enabled developers to concentrate on H.E.A.T. itself.

For example, by using Apache, developers were able to

concentrate on coding the core functionality of the

product, which is vulnerability testing, instead of having

to spend time writing a customized Web server.

H.E.A.T. runs on a network, probing specified devices

for weaknesses and reporting its results. Organizations

then mitigate or eliminate the vulnerabilities that

H.E.A.T. finds. It is not uncommon for H.E.A.T. to

probe thousands of devices in an enterprise, from

servers to network switches. H.E.A.T. is much faster

than comparable products; typical vulnerability

assessments are completed in one week.

“Because of the reliability of the H.E.A.T. product, we

are able to run assessments on devices in six continents

and nearly every time zone without having to have

anyone in the office,” reports Ken Ferguson, global IT

security manager for the Huntsman Corporation, a

leading chemical manufacturer based in Salt Lake City,

Utah. “H.E.A.T has allowed us to continually reduce

our vulnerability over the two-year period we have

used the product. We have demonstrated to business

management our commitment to a secure environ-

ment with our progress using an objective tool that

compares progress at over 100 sites spread across

the globe.”

From a development standpoint, LEF director Paul

Gustafson declares, “H.E.A.T. and PSM show that if

developers aren’t using open source software tools,

they are at a competitive disadvantage.”

Indeed, open source software should be the first line

of inquiry. “SourceForge is my friend!” quips Arnold.

“As a developer, I go there first, even if it’s just to get

an idea of how someone has done it.”

Open source software facilitates faster time-to-market

and high-quality deliverables. “Having the tools avail-

able as open source software allows us to be productive

right away and get the job done,” Solis observes. Because

it can be readily modified and is strong and secure, open

source software is key to custom development efforts.

BOOTSTRAPPING A NEW PRODUCT
In the bootstrap model, existing open source software

is the genesis of a new idea.

PasTmon, a passive transaction response time monitor,

is an example of the bootstrap model. PasTmon is an

open source utility that was developed by Graham

Bevan of CSC. Motivated to solve a technical challenge

– there were no such network traffic analyzers in the

TCP/IP world – Bevan found a core part of his solution

in Snort, an open source network intrusion detection

system. Since Snort was distributed under the GPL,

PasTmon, which incorporated portions of Snort, was

also distributed under the GPL as open source software.

“I was playing around with Snort, doing research on

security, and it dawned on me that I could leverage

Snort to build the transaction monitor,” Bevan recalls.

“I could also draw on the resources of the larger open

source community for ideas.”

PasTmon was released on SourceForge in March 2001,

just four months after Bevan began working on it.

A similar proprietary product (there were none at

the time) would have taken many more months to

release. Today there are comparable products that can

cost thousands of dollars per server per year. PasTmon

is free.

EXTENDING AN EXISTING PRODUCT
Open source can be used to extend an existing product.

This is happening with products as playful as LEGO®

MINDSTORMS™ and as serious as OpenCyc.

Toy maker LEGO, responding to hackers who were

reverse-engineering its MINDSTORMS robot kits

and creating open source development tools for them,

supported the open source community by opening up

“SourceForge is my friend! As a developer,

I go there first, even if it’s just to get an

idea of how someone has done it.”

47

the product specifications, making the robots easier to

program, and publishing advanced programmer kits

and documentation. LEGO embraced the open source

community to explore and extend its product, resulting

in new functionality and a lively development com-

munity. (See Fun Factor.)

OpenCyc is another example of an existing product,

Cyc, going open source to innovate further. Cyc is a

common sense knowledge base that has been in the

making since 1984, when development began at the

MCC (Microelectronics and Computer Technology

Corporation) under artificial intelligence guru Doug

Lenat. Lenat and the Cyc project left MCC to form

Cycorp in 1994. All along, Cyc was intended to go open

source. However, it was felt that a certain amount of

development had to be accomplished first; Cyc was

being positioned as a platform for other applications

to run on, and a substantial portion of that platform

needed to be in place. In 2002 portions of the Cyc

system were released as open source.

The turn to open source software development was

two-fold: to grow the content in Cyc’s knowledge base

and to create new applications that run on Cyc. An

underlying consideration was to help establish Cyc as

the standard for knowledge representation, knowledge

management and, in general, intelligent software

applications.

Over the course of 20 years, some two million asser-

tions have been created in Cyc’s knowledge base. That

number needs to be on the order of 200 million for Cyc

to really excel, its developers say, and that’s where open

source software development comes in. Release the code

to a global community to add many more assertions,

and rapidly. It’s like the Human Genome Project: it

took several decades to complete just one percent of

the work, but only one more decade to complete 99

percent of the work. That breathtaking achievement

involved exponentially more people and better tools –

exactly the course Cyc is following by going open

source and employing more user-friendly tools.

One company that is focused on new applications for

Cyc develops software for the packaging industry. This

company is working with OpenCyc to develop an

ontology for the packaging industry that would run

on Cyc. (An ontology defines industry terms in a clear

and consistent manner, so that, for example, everyone

has the same meaning for “customer.”) The idea is to

release the ontology as open source to encourage

industry-wide use, and to charge for the proprietary

business applications the company is developing that

draw on the ontology.

Overall, by going open source and accessing a broader

development community, Cyc – and intelligent applica-

tions – has the potential to take off.

FORMING A COMPANY TO
COMMERCIALIZE A PRODUCT
This model is about open source jump-starting not

just a new product or product extension but an entire

company. This is the story of Intalio.

As a young and ambitious software engineer, Ismael

Ghalimi had a vision for what would eventually become

the commercial company Intalio. Ghalimi formed a

hand-picked community of developers, already versed

in open source software, to turn his vision into reality.

Ghalimi’s vision was for a next-generation Internet-

based enterprise application platform. He persuaded the

developers, located across North America and Europe,

that by working together they could make more of an

impact against industry titans IBM and Microsoft than

if they worked alone. Some donated open source soft-

ware they had been working on, and modules were

aggregated to create a number of parallel projects.

The aim from the start was that the community was

working towards the creation of a commercial product.

This product eventually became the Intalio|n3 Business

Process Management System, or BPMS. (CSC and

Intalio co-founded the Business Process Management

Initiative, BPMI.org, to develop standards for business

process management.)

Although Intalio is a commercial enterprise, some of

the open source software at the root of its products is

available from ExoLab.org. ExoLab is the open source

community that preceded Intalio. (Ghalimi founded

ExoLab in 1999 and Intalio in 2000.)

ExoLab’s contribution to Intalio was two-fold. Under

license to Intalio, ExoLab supplied open source versions

48

of existing commercial software, such as the Tyrex

Object Request Broker. Using open source to replicate

commercially successful software allowed Intalio to

develop a robust enough infrastructure to have a

viable business. Here, open source spurred develop-

ment innovation.

ExoLab also supplied Castor, the XML-Java binding

software. This was a genuine product innovation. Castor

is at the heart of many commercial products.

Today Intalio’s BPMS is considered cutting edge as a

new category of software. By starting with an open

source development process, Ghalimi and his com-

munity were able to validate innovative concepts, use

components that would otherwise have to be sourced

commercially, and develop new products quickly.

INNOVATING WITH OPEN SOURCE
Research and development is about new ideas: innova-

tion. However, in the open source world innovation is

sometimes challenged by what appear to be “me-too”

products. Isn’t that open source product just another

version of an existing product? Our contention is

that most open source software is innovative, though

sometimes in less obvious or traditional ways.

Innovation, according to dictionary terms, is “the intro-

duction of something new.” In a software development

environment, innovation tends to connote significant

change – often a breakthrough.

But innovation is fickle; what is innovative in one

environment is a commodity in another. E-mail may

be innovative at the beauty shop but is a commodity

in most corporations. An innovation can be a new

product, like the first Mosaic browser, or features of

an existing product, like tabs and extensions in the

open source Mozilla Firefox browser.

Firefox’s tabbed browsing enables the user to open

multiple pages in one window as separate tabs. Its

extensions facility provides additional functionality

via small programs similar to plug-ins. These unique

features are no doubt why Firefox is experiencing an

uptick in market share (though it is still a dark horse

in the browser race).

The plug-and-play extensions in Firefox enable the

user to customize his browser quickly and easily, while

relieving the primary development team of having

to supply all new functionality. Instead, anyone can

contribute an extension. Today there are over 150

extensions, including Mouse Gestures (customize mouse

gestures to invoke commands), QuickNote (take notes

with the browser) and SearchThis! (add Web sites to

the right-click context menu, such as eBay, Wikipedia

and Dictionary.com).

Thus, in addition to the extensions themselves, the

extension facility is innovative because it fuels

innovation.

Another open source product that may appear “me

too” at first glance is the JBoss J2EE application server.

Viewed cursorily, developing a J2EE application server

is not innovative; the functionality is predefined

by the J2EE specification, which every vendor must

implement. JBoss started as a typical “me too” project,

facing formidable competition from BEA (WebLogic)

and IBM (WebSphere), who had already established

their products.

Nevertheless, JBoss used a radically different architec-

ture by implementing the application server as a loosely

coupled set of services around a micro-kernel based on

JMX (Java Management Extensions), which was a true

innovation at the time, 2001. This meant developers

could more easily change and adopt new technologies.

That, coupled with the agility of the open source

development model for rapid development, led to the

success of the JBoss open source project.

JBoss again entered new territory by combining J2EE

with aspect-oriented programming as the foundation

of the next version of JBoss, released in 2003. Again,

this step introduced a radically new view on enterprise

computing and has attracted attention in the J2EE

Open source software is competing

with nonconsumption, offering affordable

functionality to those people or things

otherwise left out.

49

world. Although it is not clear whether JBoss was the

first to combine those technologies, JBoss succeeded

in implementing and marketing them first. And now

major players like BEA, typically the first-mover in the

market, are following suit.

There are many other arenas that open source software

is innovating, including: instant messaging (Jabber

is opening up this proprietary space and innovating

around standards), application development (Eclipse

was awarded InfoWorld’s 2003 Technology of the

Year award for best application development tool),

and, of course, the operating system. Linux is changing

the economics of IT and therefore the corporation,

powering the systems of large businesses and govern-

ments. (See Mission Critical.) It is also finding its way

into numerous appliances, hand-helds and consumer

devices, making products function-rich but affordable.

(See Invisible Man.)

Back in 2002 a spokesperson for IBM, with its $1

billion investment in Linux, told NewsFactor: “We

believe that Linux is going to be the operating environ-

ment of the future because it fuels innovation like

nothing else does.”17

Many believe the open movement in general fuels

innovation, not just in software but in every discipline

where community can be involved, from hard science

to publishing. (See New Domains.) Ideas want to be

free, and open source gets them out there and gets

people working together and learning.

Open source also acts as a catalyst for competition,

even if an open source product is not ultimately

selected for use. The mere presence of open source

alternatives is putting downward pressure on propri-

etary software prices, giving organizations a new-

found negotiating tool. (See Market Force.)

But more and more, open source is the option being

selected. And in many cases, open source is bringing

computing to where it didn’t previously exist, be that

in developing nations or developing products. In this

sense open source software is a disruptive innovation,

as described by Clayton Christensen and Michael

Raynor in The Innovator’s Solution. Open source soft-

ware is competing with nonconsumption, offering

affordable functionality to those people or things

otherwise left out.

Open source software development is agile; it enables

people to bat around and release new ideas unencum-

bered. In its agility, open source revolutionizes software

development and fuels innovation.

AT YO U R S E RV I C E :

Service Opens Up New Business Opportunities

There is a common perception that technical support

is a serious shortcoming of open source software.

However, support is proving to be fertile ground in

the open source arena, rich in business opportunities

for IT service and solution providers, software vendors,

application service providers and others.

COMMUNITY-BASED SUPPORT
Support is often a criticism of open source software.

How does the software work? Who is accountable?

Who takes ownership when problems arise? Support

encompasses problem resolution, training, documen-

tation, packaging, integration and other professional

services.

In a traditional application development environment

there are two support scenarios: the customer provides

support (self-supporting) or the vendor provides sup-

port (typical customer-vendor relationship).

In some instances, there is a third scenario in which

the customer and vendor share the “pain” of support.

50

This scenario is a bridge to the open source world

because both parties have their eyes on the source

code.

An example of the “pain-sharing” approach is CSC’s

Virtual Customer Development. A leading vendor of

financial services applications, CSC shares the source

code of its insurance industry applications with cus-

tomers so they can modify the code, but with the help

of CSC. CSC incorporates customizations into the

next version of the software, relieving the customer

of this burden and strengthening its product line.

(In the insurance industry, unlike most industries,

applications are delivered in source code due to the high

degree of customization required. These core applica-

tions are the “manufacturing line” of the insurance

company, which defines its products by customizing

these systems.)

In the open source world, there are new support

scenarios involving a mix of customer, vendor, service

provider and open source community. In the customer-

community scenario, the customer provides self-

support and taps the open source community as

needed. In the vendor-community scenario, the vendor

provides support and taps the open source community

(open source distributors such as Novell/SUSE and Red

Hat, or open source OEMs who embed open source

software in their products, such as TiVo).

In the service provider-community scenario, the service

provider uses open source software in a solution and

provides support for the entire solution, tapping the

open source community. That is how it works for CSC’s

H.E.A.T. product for security vulnerability assess-

ments, which contains open source software. (See

Software Revolution.) CSC is the first line of support

for its clients.

In a more collaborative scenario, the service provider

collaborates with the client on who takes accountability

for the open source software, and this party is the liaison

to the open source community. Sometimes the open

source vendor is also part of the mix if a commercial

open source distribution is involved.

The community amplifies the support interactions

already taking place by the customer, vendor or service

provider. Although the community serves a number of

functions (bootstrapping, innovation, camaraderie), its

support role is critical in terms of product function-

ality and, ultimately, customer satisfaction.

SERVICE PROVIDER AS TRUSTED MEDIATOR
And yet, many organizations are either not com-

fortable or not interested in interacting directly with

the open source community. They want the trust,

reliability and structure of an established commercial

organization.

10 20 30 40 50 600%

Base: 85 North American firms that use open source software
(multiple responses accepted)

Percentage of Respondents

None 1

Don't know 2

Other risk 6

Fear of getting sued 9

Security 19

Fear the open source community will splinter 32

Unexpected license costs (e.g., SCO lawsuit) 36

We don't have the skills/knowledge 36

Lack of applications 42

Product immaturity 42

57%Lack of support

Lack of support is the number

one concern when it comes

to using open source software

in the enterprise.

Source: Forrester Research, Inc.

“WHAT ARE THE BIGGEST CONCERNS ABOUT LINUX AND OPEN SOURCE SOFTWARE?”

51

The number of individuals developing in the open source community has been

estimated to be anywhere between 250,000-750,000. Linux, as the largest open

source project, features more than 30 million lines of code and has an estimated

replacement R&D cost, using conventional development, of over $1 billion. The

value of this development community reaches customers through access to, and

participation in, the ongoing development and roadmap of the software, in a way

that isn’t possible with proprietary software development models.

Linux continues to gain market share in server and client markets. The size

and global nature of the open source installed base results in the acceleration

of innovation in open source software technologies and is driving widespread

support for open source software among the largest enterprise software and

hardware vendors.

As a result of large communities of development and use, IT managers are

guaranteed a growing pool of open source skilled developers and IT support staff.

The rate of innovation is greater due to larger numbers of developers and users

associated with open source software, and the quality of the code is increasingly

higher, again due to the large scale associated with open source communities.

Open source software enables timely access to source code and a constant

stream of upgrades, security patches and source code enhancements. Open

source software is the most rapidly evolving software ever, with patches and

fixes constantly available.

Customer Value:
What’s Unique About Open Source

Flexibility of code ownership

and access

The associated network

effects of these communities,

which benefit hiring, training,

innovation and code quality

A large, global community

of users

An active, large community of

developers in which customers

can participate

Red Hat identifies four unique

characteristics of open source that

provide value to its customers:

Source: Red Hat

52

The free availability of open source software and

source code opens the door for third parties to take on

the responsibility of open source support. Gartner

recognizes this trend, predicting: “By 2005, warranties

and additional maintenance for at least the 100 most-

popular open-source software products will be offered

by commercial software vendors, service providers or

insurance companies.”18

LEF vice president Bill Koff concurs: “Organizations

using open source software will seek a trusted interme-

diary because they want accountability.” It is legitimate

from a management perspective to have someone to

blame if there is a problem you can’t or don’t want to

solve. In traditional application development environ-

ments there are well-established project management

workflows that mitigate risk. Issues like escalation,

accountability, penalties and legal implications are

well-defined; project managers and executives are

experienced and comfortable with these processes.

However, similar risk-mitigation processes have yet

to be created for open source software. As a result,

customers may not be comfortable with open source

because they perceive there is no one to go to for sup-

port. How can this accountability gap be addressed?

Enter the service provider, who can fill the accounta-

bility gap by providing front line open source support.

This is a new role for the service provider, who in the

past has deferred product support to the product

vendor. Now, the service provider plays a more direct

role in servicing the product, acting as a mediator

between the customer and the open source community.

For example, CSC can be the first line of support for

open source software in large outsourcing deals. Taking

on the responsibility for open source support, and

mediating between the customer and the community,

becomes the service provider’s new value proposition.

Clients, particularly outsourcing clients, will come to

expect this. For example, open source was a key part

of contract negotiations when the South Australian

Government looked at renewing its outsourcing

contract, estimated at $1 billion, in 2003.

The service provider is well-positioned to take on open

source support because providing IT service and sup-

port is its mainline business. Supporting open source

software is an extension of the business, but with a

significant twist: the service provider must learn to

collaborate with the open source community rather

than unilaterally pass problems to a proprietary

vendor.

Although this is a critical issue for the service

provider, in many cases it is transparent to the cus-

tomer. The customer expects the service provider to

deliver and support a solution, whether the solution

uses open source software or not. The service provider

is accountable for the entire solution and must have

the expertise to support whatever software is imple-

mented. In CSC’s experience, from the customer’s

perspective the open source support issue is often

nonexistent.

CSC has also found that support for open source soft-

ware is often much better than generally assumed.

According to CSC’s Hans Jayatissa, head of eSolutions

in Denmark, where open source products are regularly

used in solutions, “If a bug is found, it is more likely

that we will report it to the open source project team

rather than fixing it ourselves. Usually, the open source

project team is able to deliver a new build with the

fix included within 24 to 48 hours. This level of sup-

port exceeds any support you might expect from a

commercial vendor.”

ROLE FOR PURE PLAY AND SOFTWARE
VENDORS TOO
It makes sense that service providers embrace open

source, not only from a customer standpoint – the

demand is there – but also from a supply standpoint,

seizing on the trend that open source is a viable service

business. Open source companies Red Hat (Linux),

Novell (SUSE LINUX), JBoss Inc. (application server),

MySQL AB (database), Zope (content management)

and VA Software (SourceForge) have built successful

Taking on the responsibility for open

source support, and mediating between

the customer and the community,

becomes the service provider’s new

value proposition.

53

businesses by providing enhanced software and a

range of fee-based services including technical support,

consulting, integration, training and documentation.

Red Hat, the most established of the pure-play open

source companies, has made a successful business by

taking aim at the unique needs of the enterprise. The

company’s Red Hat Enterprise Linux product line, for

example, benefits from the innovations provided by

an open source development model. Through Red Hat,

enterprise hardware and software vendors have a

standard platform on which to certify their products.

Red Hat provides the necessary scalability and security

Development/
Engineering Development/

Engineering

Test
Releases

Testing

Quality
Assurance

Integration

Integration

Packaging

RED HAT
ENTERPRISE

LINUX

Packaging

IHV, ISV, LSB
Certification/
COE
Compliance

Digital Sig./
Software
Delivery

Signing/
Posting

FEDORA PRO
JEC
T

COMMUNITY

COMMUNITY

Red Hat “productizes” Linux by starting with code from

the open source community and adding service, testing,

enhancements, and certification of independent software

vendors (ISVs) and independent hardware vendors (IHVs).

This is Red Hat Enterprise Linux. A new version is released

every 18 months, with ongoing bug fixes and security errata

provided through the Red Hat Network. An update that rolls

up the bug fixes and security errata is released every three

to six months. Each version maintains binary compatibility

through all the updates. Each version is supported for five

years (new hardware platforms are certified on each version

for the first three years). ISVs and IHVs are certified on

each new release.

The Fedora Project is a Red-Hat-sponsored and community-

supported open source project. It is a proving ground for

new technology that may eventually make its way into

Red Hat products. The Fedora Project is open source code

that Red Hat releases at no charge; there is a new release

every four to six months. The Fedora project is used by

end users, developers and researchers who want to be

on the leading edge of open source development.

of open source software, making mission-critical

Linux deployments possible. Red Hat helps to deploy,

integrate, update, manage, train and support those

enterprises implementing Red Hat Linux.

Red Hat assumes complete responsibility for bug fixes,

maintenance updates, new features, system manage-

ment technology and technical support. Red Hat

provides a bridge to the innovations of the open

source community. The company inherits the value

of open source and Linux, and provides a convenient,

accountable entity through which customers realize

the benefits of Linux and open source.

Source: Red Hat

LSB = Linux Standards Base
COE = Common Operating Environment

54

“This is not only about bringing open source software

to market to solve real business problems, but also

recognizing the power of the network effect on the

open source movement,” says Michael Tiemann, Red

Hat’s chief technology officer. “Metcalfe’s Law, which

says that the value of the network increases by the

square of the number of users or devices connected

to it, applies to open source. The more developers

who participate, the greater the power of the open

source community to continue to generate new ideas,

ultimately creating a win-win proposition for all.”

The result has been a winning combination. In reports

for the quarter ending February 2004, Red Hat reported

having sold 87,000 subscriptions for Red Hat Linux

while Red Hat’s nearest competitor sold 3,800 subscrip-

tions in a similar time frame. This has given Red Hat

significant leverage with ISVs and hardware OEMs.

Offering enterprise hardware and software vendors a

standard platform on which to certify their products,

Red Hat’s software is used by over 900 certified ISV

applications, further strengthening the software’s

credibility and use in the enterprise.

Novell is another case of a vendor building a business

on open source. Once considered moribund, the net-

working company is revitalizing itself with open source,

having acquired leading enterprise Linux distributor

SUSE LINUX in 2004. Novell, a classic proprietary

enterprise, is turning to open source to breathe life

into the company – a testament that open source is a

serious service business. (This could be the “Opensoft”

move of the decade.)

In a more recent move, HP began providing technical

support for JBoss and MySQL in June 2004, showing

that established proprietary vendors are well positioned

to play the open source service provider role. As well,

HP, Sun, Novell and other vendors are providing

indemnity for their Linux customers against potential

SCO lawsuits, illustrating that there are many sides to

service and reinforcing the vendor’s role as a trusted

provider. (See Legal and Business Issues.)

NEW OPPORTUNITIES FOR ASPS
Application service providers are also getting into the

open source act. ASPs are seizing on a viable business

opportunity: applications with zero software costs

around which to leverage a service business.

The open source proposition for an ASP is a business

free of license fees. By hosting open source applica-

tions, the ASP does not incur any license charges for

the applications being hosted. This lowers the barrier

to entry for an ASP, opening the market to small

companies and start-ups who may be rich in expertise

but not cash.

For example, start-up Workspot provided a Linux

desktop platform and applications as an ASP. Users

could access the platform, hosted by Workspot, via

their browsers for $9.95 per month. Workspot’s vision

was to provide a personal, infinite machine – an eternal

desktop available remotely from anywhere. That could

only be done using open source software. Though

Workspot disbanded after five years (in 2003), it was a

very forward-thinking ASP strategy.

In addition to start-ups, traditional ISPs can leverage

open source software to expand into the ASP realm.

ISPs, with their robust technology infrastructure, are

well-positioned to do this. What’s needed are more

thin client environments – kiosks, hand-helds, browser

access to full applications – to stoke the flame of the

ASP market.

Clearly, open source business opportunities are

moving up the stack as open source commoditizes

software infrastructure and applications. Service

opportunities expand from professional services

related to application delivery, to providing applica-

tions and services directly to end users. Open source

guru Tim O’Reilly calls the latter an example of a

“hidden service business model” for open source.19

O’Reilly maintains there are several hidden service

business models, ISPs being another. For example,

“The more developers who participate,

the greater the power of the open source

community to continue to generate

new ideas, ultimately creating a win-win

proposition for all.”

55

I N V I S I B L E M A N :

Open Source Is All Around Us

O’Reilly has stated that UUNet, not Red Hat, is the

greatest open source business success to date. UUNet

(which became the Internet unit of MCI) built a success-

ful billion-dollar ISP business on open source software,

dwarfing Red Hat, a roughly $100 million business.

SERVICE IS KING
Having customers use open source software for free

and pay for technical support is the first level of business

around the open source concept. The next level is having

customers pay for the open source software or applica-

tions as a service delivered by an ASP, along with support.

Either way, service is king, and rightfully so.

Organizations can expect to pay for professional

services and support to make the best use of open

source software, the same way they need the profes-

sional services of attorneys to make the best use of

publicly available laws. Enterprising service providers

will be “at your service” for open source.

What do watching your favorite movie on your TiVo,

surfing the Web wirelessly from your terrace, and

listening to MP3 music in your car have in common?

All these technologies use open source software “under

the hood.”

Embedded open source software is a rich market,

driving the adoption of open source software further.

An increasing number of network appliances, consumer

electronics products and gadgets, and even mobile

devices for the military are powered by Linux and

other open source software hidden inside.

As open source software embeds itself everywhere, we

are witnessing an engine of growth in information

technology not unlike the railroads, a comparison

made by economist Brian Arthur. According to Arthur,

when technology embeds itself deep in the economy,

it becomes an engine of growth for the economy. This

long technology “buildout” happens after an initial

boom and bust with the technology (recall the dot-com

bubble and burst) and can last decades.20 During the

buildout, the technology becomes part of the fabric of

life – even invisible – and just works.

FROM ITS ORIGINS…
When Linus Torvalds began developing Linux, he never

expected Linux to run on anything but a 386-based PC.

However, the dynamics and power of the open source

community proved him wrong. Shortly after various

projects began porting the original Linux kernel to

large servers and workstations, several developers aimed

in the opposite direction: bring Linux to small-scale

hardware. Following the early success of projects like

ELKS (Embedded Linux Kernel Subset) and uCLinux

(micro-controller Linux), many free and commercial

distributions of embedded Linux systems appeared

on the market.

Today embedded Linux provides the software foun-

dation for many consumer products, offloading the

burden of software development from the manufac-

turer, delivering reliable functionality, providing a new

level of robustness and capability to innovate on, and

keeping costs down – especially critical for consumer

products and network appliances.

…TO THE NETWORK RACK
Firewalls, routers, modems, wireless local area net-

work access points, and other network appliances are

ubiquitous in today’s computing infrastructure. Most of

these unimposing black boxes require a sophisticated

software system under the hood to be able to do their

day-to-day operations. Thus it is understandable why

Linux is the number one choice of embedded operating

systems by network hardware manufacturers, most

of whom are located in Asia. In a survey conducted

in October 2003 by EE Times – Asia and Gartner,

56

Jim Barton, a founder of TiVo Inc., pioneered the idea

of leveraging open source software in a commercial

product, overcoming licensing fears that Linux would

not allow proprietary development since it was licensed

under the GPL. In an article in QUEUE magazine in

July 2003, Barton, looking back, wrote that “careful

reading of the GPL convinced me that these fears were

unfounded and that Linux could give us a powerful

development advantage while allowing the protection

of our intellectual property.”22 In order to fulfill the

GPL, the company has released the full source code of

its modified Linux kernel on its Web site.

Today TiVo is a huge success, igniting a “TiVolution”

with some 1.3 million subscribers. TiVo communities

have formed on the Internet, like the TiVo Community

Forum that boasts roughly 60,000 members and over

1.8 million postings. And unbeknownst to many of

TiVo’s subscribers, they are using Linux.

Indeed, TiVo appears to the consumer as a “black

box,” concealing its open source inner workings. The

opposite approach was taken by the Germany-based

Dream-Multimedia-TV GmbH for its DVR, called

Dreambox DM7000. The company saw an opportunity

to target an open source-based product not only at

consumers but also at techies – TV device hackers and

Linux programmers.

The ZIP 4x4 integrates a business phone with an IP

phone and is based entirely on open technologies, including

Linux. The phone is compatible with any IP telephony

system using SIP (Session Initiation Protocol) and supports

advanced features such as line-rate Ethernet switching,

voice encryption, conferencing with four additional callers,

and four Ethernet ports.

depending on the region, 40-50 percent of the vendors

reported using embedded Linux as the base for their

firmware.21

The massive impact Linux is having on the embedded

software market is reinforced by the actions of Wind

River Systems, a leading provider of tools and plat-

forms for embedded software development, to fully

support Linux and to create an open IDE built on

Eclipse. Early this year, Wind River announced it was

teaming with Red Hat to develop an integrated

embedded solution based on Linux and Wind River’s

development tools.

The powerful basic framework that makes up Linux is

not the only reason network hardware manufacturers

rely on the open source operating system. Because Linux

has sophisticated networking capabilities itself, such

as a full-fledged packet filter and firewall subsystem, it

is an ideal base for building network appliances.

An innovative combination of a network appliance and

a business phone is the ZIP 4x4 IP Telephone by Zultys

Technologies. At first glance, the ZIP 4x4 looks like

an ordinary analog phone, but in addition it provides

voice over IP functionality (Internet phone) and has a

network switch, firewall and Internet router built in.

Like other network appliances, Zultys’ product is based

on embedded Linux. Bridging the gap between analog

phone and digital Internet, this product is a major step

towards the consumerization of open source under-

neath; the open platform helps make such a phone part

of the standard business infrastructure of the future –

pushing Linux and open source along with it.

…INTO THE LIVING ROOM
One of the earliest consumer products that used Linux

as an embedded operating system was TiVo, a set-top

box that digitally records television programs. Released

in 1999, TiVo was the first commercially available

digital video recorder (DVR).

Open source software could be the

breakthrough needed to finally converge

computing and TV.

Source: Zultys Technologies

57

“Basically, everybody’s free to do anything with this

box, but in our standard, tv-centric application we

don’t use many external applications” says Felix

Domke, developer of the DM7000, in an article at

LinuxDevices.com.23 Opening up a product this way

would not be possible with proprietary operating sys-

tems, which would severely limit outside developers’

ability to extend functionality. But thanks to the open

platform, much additional software is available for the

Dreambox, including an open source Web server and

even an e-mail client. Open source software could be the

breakthrough needed to finally converge computing

and TV.

…ON THE ROAD
The growing demand to listen to digital audio files

wherever people enjoy music was the key motivation

for PhatNoise, founded in 1999, to create a digital

jukebox for automobiles. The PhatNoise Car Audio

System is an MP3 player that works similar to a CD

changer but can hold an enormous amount of music

– the equivalent of approximately 400 music CDs.

Music is transferred from a PC to the PhatNoise system

and played on the car’s stereo. The PhatNoise system,

which provides intuitive file management and can gen-

erate playlists dynamically according to the consumer’s

preferences, is based on Linux.

Two key reasons for using Linux were $0 licensing cost

and faster development; it was far more cost-effective

to start with Linux and adapt it rather than create the

entire solution from scratch. “Embedded devices now

need to be equipped with a huge variety of software,

and traditional embedded operating systems usually

don’t have enough built in,” explains Dan Benyamin,

co-founder and CTO of PhatNoise. “As Linux is often

deployed as a desktop operating system, we can start

with a much richer pool of applications and features,

and pare it down as necessary.”

…IN YOUR POCKET
There is always room for improvement in being able

to access personal information at home or on the road.

The availability of a robust operating system with

powerful networking capabilities for small devices

allows vendors to build cheap servers for accessing

personal information.

One is D-Link Systems’ Central Home Drive, a modem-

sized appliance that boosts the storage capacity of home

networks, holding up to 5,000 MP3 files or 20,000

high-resolution JPEG images. Another is Intel’s inno-

vative prototype of a personal server, a wallet-sized

gadget that links to other computers wirelessly and

gives them file access, allowing the user to carry his files

and data in his pocket and work anywhere. Lugging a

laptop is not necessary.

The Dreambox DM7000, a digital video recorder, runs

on Linux and is open to all for tinkering. Because of the

product’s open source approach, much additional software

is available for it, including an open source Web server

and an e-mail client.

Source: Dream-Multimedia-TV GmbH

Linux contributed to innovation and faster time-to-market

for the PhatNoise car audio system, which can store hundreds

of CDs’ worth of music that can be played on the car’s

stereo system. It was far more cost-effective to start with

Linux and adapt it rather than create the entire solution

from scratch.

Source: PhatNoise, Inc.

58

In addition to Linux, both appliances use Samba (file

sharing server) and HTTP (file sharing protocol), both

open source. Intel’s Personal Server uses a modified

version of Apache to implement the WebDAV service

for distributed file management.

In the PDA-smart phone arena, Linux is emerging

as an alternative to PalmOne’s PalmOS, Microsoft’s

Windows CE and Symbian’s Symbian OS. The break-

through for Linux in the PDA

market was the announcement of

the Sharp Zaurus SL5000D in 2001;

this was the first PDA from a major

consumer electronics manufacturer

that used Linux as its primary

operating system.

With smart phones, the break-

through came in 2003, when

Motorola, the world’s number

two maker of cellular phones,

announced it would base its future

cellular phones, including less

expensive models, on embedded

Linux and Sun’s Java program-

ming language. That year, Motorola

introduced the world’s first open

source smart phone, the Motorola

A760™, launched in the Asia-

Pacific region. The A760 is a high-

end smart phone that includes a

personal information management

suite, video player, music player and

instant messaging. Recently, the

company announced the Linux-

based Motorola E680™ phone,

which is expected to ship globally;

this would make it the first Linux-

based phone from Motorola avail-

able in the United States.

The move to support Linux and

Java as core technologies was

spurred by innovation and faster

development. Motorola’s leader-

ship in Java technology, coupled

with Linux, gives developers more

freedom to create new applications, from games to

productivity tools. Development can be faster than in

a proprietary-only world given the rapid pace of the

collaborative open source community as it leverages

existing open source code.

Cost was a factor also. A $0 license fee is very attractive

when mass-producing consumer devices; proprietary

licensing fees can be a hefty portion of the cost.

Two of Motorola’s Linux-based

phones, which are like mini multimedia

centers, are the A760 (left) and the

E680 (below).

Intel’s prototype of a personal server

is about mobility and convenience.

The concept behind the personal

server, which runs embedded Linux, is

that users carry their data – not their

laptop – and work anywhere using

local computers. The personal server

is like a virtual hard disk that is

accessed via a wireless connection to

whatever computing device is nearby

and available. Users can access their

personal information as if working from

their own computer, without having

to rely on an Internet connection.

Source: Intel Corporation

Source: Motorola, Inc.

59

Along with Motorola, Samsung and NEC – two other

major device manufacturers – are planning Linux-

based phones. Openwave Systems, which provides

application and interface software for device manufac-

turers and cellular phone carriers, and whose software

can be found in more than 50 percent of all data-

enabled phones shipping today, has also announced

a version of its software for Linux.

…ONTO THE BAT TLEFIELD
Linux may be tucked inside a device in your pocket or

living room, but it is also on the front lines for the

military. Inside the U.S. Army’s sophisticated wearable

computer called the Land Warrior is embedded Linux,

powering secure wireless communications and other

activities for soldiers using the system.

In general, the wearables and hand-held market is

growing, particularly for specialized applications such

as those for military, field and other mobile workers.

Custom software is an important part of the equation.

Adaptability, modularity, power efficiency and time-

to-market are all reasons to use embedded Linux in

mobile applications.

In developing the Land Warrior system, the U.S. Army

migrated the platform from Windows to Linux for

security and other reasons. Working with General

Dynamics, the lead contractor for the Land Warrior

system, CSC is responsible for delivering the tailored

operating system and user application.

…AND WHO KNOWS WHERE?
The high profile of open source in the media has

led to at least one curious appearance signaling the

ultimate in open source consumerization. Wal-Mart’s

German branch is marketing a new laundry detergent

called “Linux” along with a fabric softener called

“micro&soft.” Both products are manufactured by the

Swiss company Rösch. Happily, in this combination

Linux and micro&soft are highly compatible.

Back in the software world, an open source strategy

“under the hood” provides a robust commodity plat-

form for product development, freedom to modify

and extend the software, faster time-to-market and

lower overall product costs.

A commodity platform raises innovation and differ-

entiation (and profits) to the application level. This is

what captures the consumer: the movie, the music,

the game, the instant messaging. That open source is

“under the hood” is not important to the consumer,

nor should it be; the product just works.

Even in the laundry: Open source makes its move into

consumer goods as common as laundry products, with

“Linux” laundry detergent and “micro&soft” fabric softener,

both by Swiss manufacturer Rösch. (According to the

company, there is already a “Windows” window cleaning

product on the market.) The laundry products are being

sold in Wal-Mart in Germany.

Source: Rösch AG

60

M A R K E T F O RC E :

Open Source Increases Competition, Challenging Established Market Powers

“Open source is a market force – not just source code.”

Forrester Research24

Open source is a catalyst for competition in the software

market. That competition takes on many forms,

involving direct competition with proprietary prod-

ucts, co-opetition, consortia, government initiatives,

commoditization and even competition among open

source products themselves. The result: open source is

stirring the competitive waters, challenging established

market powers to defend their products and – if

nothing else – serving as a negotiating tool for lowering

commercial software license fees.

In the past, competition came from existing companies

and start-ups attempting to unseat established market

powers. Today the open source community is showing

it is a viable source of competition – on a par with, if

not stronger than, traditional competitors. As it flexes

its muscle, open source is causing all sorts of twists

and turns in the competitive landscape.

Even Microsoft has taken exploratory steps into open

source. The company has released as open source the

code for its Windows Template Library, which is used

to develop Windows applications and user interface

components, and the code for its Windows Installer

XML, which had over 80,000 downloads in the first

few weeks after its release. Such moves by Microsoft

are notable given the software giant’s business is a

paradigm of the closed source approach.

HEAD TO HEAD
It is no secret that Linux is going head to head against

Microsoft Windows as the operating system of choice,

first starting with the server and now moving into the

desktop. Linux has put pressure on Windows, which

has more than 90 percent of the PC market worldwide

(followed by MacOS at roughly two percent). It is

a David and Goliath story, to be sure, but David is

getting stronger; analysts expect Linux to take over the

number two spot in 2004.

An open source alternative to Microsoft has become

a rallying cry for Microsoft competitors, for both

desktop operating system and the office suite. IBM,

HP, Sun, Red Hat, Novell and others have formally

backed Linux on the desktop. Novell’s acquisition of

SuSE Linux was a bet-the-company move by Novell to

face off against Microsoft, a testimony of the strength

of Linux as a market force.

OpenOffice, with its roots in Sun’s StarOffice, is

competing against Microsoft Office. First released in

2000, OpenOffice has a 14 percent share of the large

enterprise office systems market, according to Forrester

Research, suggesting it is becoming a true alternative

to Microsoft Office, which holds a 94 percent share

of the overall office market, has been around for over

a decade, and claims 300 million users worldwide.

Microsoft, which in general has scoffed the open

source approach, nonetheless recognizes the threat;

the company published a competitive guide for its

sales force comparing Microsoft Office to OpenOffice

(which was quickly removed from its Web site).

There has even been talk of IBM migrating Microsoft

Office to Linux, whether through emulation or actual

porting.

The browser wars also sparked a strategic move to

open source. In 1998 Netscape released its browser to

open source as Mozilla, in a final move against

Microsoft’s Internet Explorer. By opening its source

code to the worldwide development community,

Netscape hoped to garner support for its once-

flagship browser. Although the move did little to

sustain Netscape, it eventually produced a new open

source browser in 2002. Recently the browser, today

called Mozilla Firefox, has gained momentum as a

competitive browser with innovative features. In an

interesting move, Nokia has funded the Mozilla

Foundation to develop a cell phone browser. This could

fuel Firefox’s popularity and, if it continues to grow,

shift the balance of power in the browser world.

61

CO-OPETITION
Open source, by its very nature of collaboration,

gets competitors to pull in the same direction.

Openadaptor is an example of this co-opetition, where

competitors work with common code to create an

alternative to costly proprietary software. The open-

adaptor open source project has financial houses

Dresdner Kleinwort Wasserstein (DrKW), the invest-

ment banking arm of Dresdner Bank, and other

German banks on the same side rather than opposing

sides. This is notable in the highly competitive bank-

ing industry. The banks are working with openadaptor

to develop an open source alternative to high-priced

Enterprise Application Integration tools.

DrKW developed the original code and released it as

open source in 2001. Other banks have adopted and

extended the code, in some cases releasing it back to

the open source community. And so competitors are

working in tandem, if somewhat indirectly, to provide

better and cheaper software tools for integrating

disparate systems.

The motivation for DrKW to go open source was to

increase innovation by drawing on a larger community,

including competitors. Application integration can cost

over a million dollars in license fees alone; going open

source means no license fees, expertise from a broad

community, no vendor lock-in and, ultimately,

increased business from making it easier to do business

electronically thanks to the integration provided by

openadaptor.

Although openadaptor does not offer all the func-

tionality of commercial EAI offerings, it presents an

alternative for some organizations and is a catalyst

for co-opetition.

CONSORTIA
The Eclipse consortium, founded by IBM but today

an independent consortium, develops products and

standards for the Eclipse platform, an integrated

development environment used to write applications.

As an open source development project, Eclipse has

brought together some 50 vendors to create a formi-

dable challenge to established IDE vendors (e.g.,

Borland Software with its JBuilder IDE).

Eclipse was started by IBM as the next version of

VisualAge for Java; IBM released the code to open

source in 2001 and led the Eclipse consortium for

several years, investing $40 million to seed the open

source project. Though IBM’s influence over the

consortium is questioned – the consortium was just

decoupled from IBM this year – the Eclipse platform

is a popular alternative that is setting standards for

IDEs. The platform receives roughly 30,000 download

requests daily and boasts over 600 open source or

freeware plug-ins.

But Eclipse is not the only open source IDE. It

competes with NetBeans, put into open source by Sun

in 2000. (Sun markets the commercial version of

NetBeans as Sun ONE Development Studio.)

NetBeans has lost ground to Eclipse, fueling a rivalry

between the two. Recently, Sun was asked to join the

Eclipse project but declined because it did not want to

abandon or merge NetBeans, which is the foundation

of Sun’s commercial products.

Proprietary

Open Source

Open source, by its very nature of

collaboration, gets competitors to pull

in the same direction.

OPEN SOURCE SHIFTS THE BALANCE OF POWER

62

NetBeans was the first Java IDE that created the very

successful development model of having a core system

with a set of independent plug-ins. This approach fits

the open source distributed development model well

and was later adopted by IBM for the Eclipse project.

The Eclipse consortium is a significant player in the

IDE environment, showing the power of an open source

industry consortium – albeit with a strong industry

founder – to set standards and be a force in the market.

The Eclipse platform has triggered a new round of

competitive products, including IBM’s WebSphere

Studio Application Developer and SAP’s NetWeaver

Developer Studio. Both are enhanced versions of the

Eclipse platform.

In a move partly aimed at competing with Eclipse and

NetBeans, BEA is releasing part of its WebLogic pro-

gramming framework as open source software. BEA

hopes to increase the number of Java developers and

encourage them to build products for all Java platforms

by providing an open source runtime environment

that can deploy applications to any runtime platform,

not just BEA’s platform. The move is intended to shore

up BEA’s declining Java application server market

position. Anything that makes Java easier to program

with is key to growing the Java ecosystem (and coun-

tering Microsoft).

GOVERNMENT INITIATIVES
There have been numerous government initiatives

around open source software, from policies mandating

its use to policies requiring its review as part of the

selection process.

The Massachusetts state government’s mandate that

open source software must be used in government

systems whenever possible, or else it must be explained

why open source doesn’t meet system needs, has put

an entirely new form of pressure on proprietary soft-

ware vendors. Vendors must justify their products, not

to mention their prices, and support open source where

they can.

In one case with the state’s Health and Human

Services Agency, a system was developed on JBoss

but then ported to a proprietary environment for

production. JBoss was deemed development-ready

but not production-ready by three vendors HHS

summoned to review the approach; the vendors raised

questions about JBoss performance and how exten-

sively JBoss had been tested. HHS agreed with the

vendors’ recommendation to not use JBoss in a produc-

tion environment.

As it turned out, the port to the proprietary platform

for production was difficult, eating up any savings

realized on the development side. It seems likely that

eventually organizations in situations like this will try

JBoss for production as well.

Vendors cannot ignore the open source juggernaut but

need to live in harmony with it. Look at the open

source persistence framework Hibernate; whereas JBoss

integrates well with Hibernate, other vendor platforms

do not. Instead, they require custom code. This was

one element of the porting difficulties HHS faced.

Government initiatives promoting open source compel

vendors to explain what is uniquely different about

their products, and why an organization needs their

products’ particular features. Thus, software assess-

ments are becoming more granular, based on specific

features currently needed; the sales pitch that features

may be needed at a later date does not seem to hold

as much sway as it once did. Vendors will need to seek

new ways to compete as they face off against open

source offerings and mandates.

COMMODITIZATION
Open source software brings commoditization to the

software stack, starting at the lowest levels. In theory,

this drives out competition over time (the way the

open hardware platform of the IBM PC drove out

proprietary hardware vendors Data General, Digital

and Prime). The open source software products become

commodities, creating a low- to no-price market where

proprietary products cannot compete.

This can be seen with three open source utilities: Log4J,

Tomcat and Struts. These three are used in the majority

of enterprise applications today and have no real

commercial competition. They have taken over their

market space; prior to these utilities, developers had to

63

create custom code to do the job. (Log4J is for logging

services, Tomcat is the Java “container” or processor for

Java Servlets and Java Server Pages, and Struts is a

framework for building Java Web applications.) All

three are part of the Apache Jakarta Project, an open

source project for commoditizing enterprise Java

application development.

As commodity software, Log4J, Tomcat and Struts

preempt would-be competitors from entering the

market. Users get the software they need; the open

source products are so good and widely used that they

don’t attract commercial competitors.

With commodity software as a base, differentiation

moves up the stack. The Eclipse platform is essentially

a commodity platform, upon which vendors build

products. CSC has created one such product, VP/MS

Model Manager, an IDE customized for the financial

services industry to develop new financial and insur-

ance products. VP/MS Model Manager is part of

VP/MS, CSC’s Visual Product Modeling System. VP/MS

has been integrated into many of CSC’s financial and

insurance services products.

Using VP/MS and VP/MS Model Manager, insurance

companies like Signal Iduna in Germany are able to

bring new products from concept to market in as little

as half the time and half the effort it used to take.

By working with a commodity open source platform for

the model manager, CSC was able to focus on custom

enhancements rather than reinventing the wheel. “The

customer gets a higher quality product than if open

source had not been used,” says Rolf Wilms, senior

software architect in CSC’s Financial Services Group in

Cologne, Germany. “The extensible plug-in architec-

ture offered by Eclipse allows us to incrementally add

support for the VP/MS family of products.”

With VP/MS Model Manager, CSC did not just take

from the open source community but also gave back.

CSC contributed two modules it developed back to the

Eclipse community: Module Management (for configu-

ration management) and Editors (for detecting conflicts

before they occur).

“We could not have developed VP/MS Model Manager

without Eclipse. We would have had to develop the

entire IDE first, which would have been too costly.

It’s only fair that we gave something back to the com-

munity,” Wilms explains. “We contributed something

of technical value to the community that was not a

competitive advantage for CSC.”

And so a commodity IDE stoked innovation, both

for CSC clients and for the open source community

at large.

This is good news for the market, but it must be noted

that commoditization – and its competitive impact –

does not happen over night. For instance, commodi-

tization threatens the database arena but hasn’t taken

hold yet. MySQL is making inroads, growing over

30 percent in the last half of 2003, and MaxDB was

a valiant effort by SAP, in conjunction with MySQL,

to release a database management system into open

source. The presence of open source databases

signals the evolution of the database to commodity

software.

However, an open source database is a tough sell at

the high end, where most enterprises will continue to

use proprietary databases (Oracle and IBM’s DB2) for

some time. Companies have their businesses invested

in these databases and do not consider them com-

modity software just yet. Switching costs are high in

terms of data migration, and many companies enjoy

favorable database license terms, negating the effect

of free open source licenses. Thus, while the database

arena shows movement towards commoditization, open

source adoption will be slower for high-end databases

than for other software like operating systems and

development tools.

Open source databases are gaining traction at the edge

of the enterprise for tasks like reporting, where the

technology can just be “good enough.” As more open

source databases are deployed at the edge and the low

end, and confidence is built, the stage is set for open

source databases to move into the core of the business.

Watch how this space plays out.

64

STANDARDS
Standards change the nature of competition. They

represent requirements vendors must conform to in

order to attract the largest possible market (although

critics will argue that standards inhibit innovation.)

Value is added on top of the standard. Once again, as

with commoditization, differentiation moves up the

stack.

The open source community can accelerate the

development of standards. As the world gets faster,

the open source community, in its global networked

collaboration, has the potential to work through stan-

dards issues faster than traditional standards bodies,

which can get bogged down in face-to-face meetings

and bureaucracy.

One example of an open source community creating a

standard is Hibernate. The Hibernate project was started

in late 2001 by a student in Australia, Gavin King,

and is now the de facto standard for object-relational

mapping tools in small and medium applications.

Another standard, JDO (Java Data Objects), was under

development at the time but has floundered in the

face of Hibernate.

Hibernate is a good, lightweight tool. It is straight-

forward, easy to use, and has good performance.

It was not a standard when it was initially developed,

but because so many people started using it, it

became the de facto standard for small and mid-size

organizations.

JDO, by comparison, is complex to use. Although

major vendors have created products based on JDO,

they are not widely used and in some cases the product

only partially implements the standard. Many people

were involved in creating JDO, which took three

years to reach its first release, in 2002. At the time

the standard was incomplete, and it has never been

finished. So while Hibernate has thrived, JDO has

struggled. However, there are signs that the forth-

coming JDO 2.0 is gaining ground, and Oracle’s

TopLink and Hibernate are considering supporting it.

In fact, Gavin King is now part of the JDO standards

body, which he was asked to join.

Recently the EJB3.0 Expert Group, which is shaping

the next version of the Enterprise Java Beans (EJB)

specification (EJB constitutes a major part of the J2EE

specification), decided to move its current persistency

model to a new model based on Hibernate’s concepts

rather than those of JDO. This illustrates how the

agile and pragmatic approach of open source projects

can be superior to the institutional definition of

standards.

Is the open source community the new route to

standards in the 21st century? Time will tell. IBM

is pressing Sun for an open source Java so that an

independent community can further develop the

technology that has become an industry standard.

At the very least, the open source community is an

alternative approach to creating standards, and the

competitive ramifications are being felt.

SURVIVAL
Another force at work in the open source competitive

landscape is sheer survival.

Sometimes the hype about open source software gives

the impression that all open source software is good,

which is not the case. As with commercial software,

only a select few products are really good and widely

used. There are over 82,000 open source projects on

SourceForge, but probably 80-90 percent of them are

low-quality or low-usage projects.

Open source projects survive based on their quality

and functionality, not marketing hype. The best prod-

ucts survive, such as Linux , but so do products that

are “good enough,” such as MySQL.

Within the open source world, survival is not neces-

sarily a dog-eat-dog proposition either. One of the

Open source is a competitive force,

redistributing the balance of power

in the open source world and, more

significantly, the software market as

a whole.

65

N E W D O M A I N S :

Open Source Lives in Many Domains

biggest open source rivalries is between desktop

environments KDE and GNOME, and the two look

like they will co-exist.

Open source is a competitive force, redistributing

the balance of power in the open source world and,

more significantly, the software market as a whole.

The open source community is perhaps a surprising

competitor, being a volunteer corps, but the quality

and passion behind the movement are standing up to

major market players. As a 2003 study by the Swedish

Agency for Public Management concluded, “Free

and open source software is not any makeshift

phenomenon, but instead a fully adequate and

dependable competitor to existing proprietary prod-

ucts and solutions.”25 Open source is a competitive

force that organizations, whether software consumers

or producers, need to recognize and leverage.

It is an age-old longing: having access to all the brain-

power of mankind. In 1937 British writer H.G. Wells

wrote an article about a “permanent world encyclope-

dia” in which he predicted, “A great number of workers

would be engaged perpetually in perfecting this index

of human knowledge and keeping it up to date.”26

Wells’ vision was prophetic, as this is exactly what

Wikipedia is about today.

Wikipedia is a global open source encyclopedia on the

Web to which anyone can contribute. Billed as “the free

encyclopedia,” Wikipedia began in 2001 and today

boasts over 230,000 articles in the English language

version. The open source approach enables Wikipedia

to have the most accurate, up-to-date information

possible. Anyone can contribute information and

anyone can access the information.

Wikipedia, which received the Prix Ars Electronica top

prize for digital communities in 2004, is an example of

how the open source approach lives in many domains,

not just software development, and brings a wider

meaning to “source.”

The general characteristics of the open source move-

ment, wherever it operates, are 1) freely available

information and 2) collaborative problem-solving.

Usually the problem is complex and communal in

nature. Often the open source approach is a way to

match demand (a problem needs to be solved) with

supply (a volunteer community of experts).

Of course, communities have been solving problems

for a long time, whether to fight disease, invent a

product or catch a criminal. What makes today’s open

source movement different is the Internet, which links

Open source concepts are at the core of Wikipedia, the

online encyclopedia that is freely available and modifiable.

(www.wikipedia.org)

http://www.wikipedia.org

66

the community with astonishing ease, speed and

reach, and provides access to core information related

to the problem.

The Human Genome Project is an example of a well-

known initiative that represents open source in another

domain, biology. Researchers around the world work

together to decode human DNA, and the results

are freely available to all. A less well-known initiative

is Openlaw, an experiment at Harvard Law School

for creating legal arguments in an open source-style

public forum, enabling editing and commenting on

legal briefs online. The merits of open source are being

put to work in these and other areas far outside the

realm of software development, including hardware

and product design, agriculture, science, music and

collaborative knowledge.

HARDWARE AND PRODUCT DESIGN
ThinkCycle is a collaborative initiative for designing

products and services for under-served communities

and the environment. Founded on the open source

approach, ThinkCycle has created a global community

to share knowledge and develop the latest innovations

for addressing critical problems in such areas as health,

energy, education and sustainable living (agriculture,

water, housing). Projects include low-cost eye glasses,

low-cost cholera treatment devices, human power

generation (in lieu of batteries), special incubators

for premature babies, and household water treatment

systems.

The ThinkCycle initiative, developed and operated

by the MIT Media Lab, joins designers, engineers and

experts from universities, non-governmental organiza-

tions, companies, local communities and the general

public. The idea is to provide a database of well-

formed problems and solutions that these groups can

contribute to and access.

In the computer market, OpenCores.org is a portal

for open source hardware projects, somewhat akin to

SourceForge for software projects. OpenCores focuses

on projects with openly developed application-specific

integrated circuits (ASICs). Considerable effort goes

into ASIC design; re-using core designs speeds up

ASIC design by enabling engineers to collaborate.

The mission of OpenCores is to help the hardware

community create and publish core designs under a

license for hardware modeled on the Lesser General

Public License for software. (See Legal and Business

Issues.) The intent is to have core designs that are

freely available, freely usable and freely re-usable.

The benefit to the market is innovation; anything

that spurs creativity – like reuse of core designs – is key.

IBM is beginning to open up its chip design, a signif-

icant move for a company renown for its advanced

chip design and manufacturing technology. But in a

field where future innovation is expected to come more

from customization than increased speed, IBM hopes

to seed that innovation by opening some of its chip

technology to a wider community.

Following lessons it has learned from the Internet and

Linux, IBM intends to share more technical information

about its Power family of microprocessors, distribute

free software tools for chip design and testing, and

establish design centers worldwide to help customers

create custom chips.

Intel as well is looking at open source for advancing

its chip design. Intel’s Open Source Machine Learning

Library (OpenML) enables Intel to gather input from

a large community to learn more about the nascent

field of real-time machine learning. The more Intel

understands about machine learning and how it is

being used by others, the better it can develop chips

that facilitate it. Open source expands the research

base and stimulates collaboration and innovation

in machine learning, ultimately leading to improved

chip design.

The open-source-for-innovation theme carries through

even to large-scale buildings. MIT’s Open Source

Building Alliance focuses on developing and testing

new strategies that will lead to better materials, tech-

nologies, applications and services for buildings.

Initially, the project is concentrating on single and

multi-family residences.

There is a conscious effort to adapt open source soft-

ware techniques to the building domain. According

to the OSBA prospectus:

67

Open source strategies have dramatically improved

the quality, value, and variety of products in other

industries, from electronics to automotive. In

contrast, most new homes and apartments are

generic, low-grade, and expensive. The OSBA

proposes that an open source web of industrial

relationships, combined with the modularity of

design, data, electronics, software, and physical

component connections, can lead to an explosion

of creative activity resulting in high-performance,

cost-effective environments. We believe that this

approach is necessary to remove barriers to innova-

tion, and that it will create exciting opportunities

related to energy conservation, proactive home-

based preventative health care, and new forms

of work, learning, entertainment, and the mass-

customization of highly personalized residential

environments.27

OSBA will operate as an open source organization,

with a Web site for idea generation, technical evalua-

tion and public comment. The organization will create

test beds and demonstration environments, some of

which will be rendered in commercial developments.

Some of the design concepts under consideration

are modular building parts, reconfigurable components

that replace walls, power connections, and technologies

for environmental sensing, activity recognition and

communication media.

AGRICULTURE
In addition to shelter, open source techniques can

be applied to another basic need: food. Cambia

(Center for the Application of Molecular Biology to

International Agriculture) conducts research in sus-

tainable agriculture, developing a powerful genetics

and policy toolkit that enables plant breeders and

scientists worldwide to add new directions to conven-

tional plant and animal breeding. Cambia’s goal is to

help local communities solve their own agricultural and

environmental problems by unlocking the intellectual

property logjam that has stymied the full potential

of modern genetics.

Cambia, based in Canberra, Australia, believes everyone

from farmers to researchers should have access to the

latest biotechnology tools; they should not be controlled

by large corporations who dominate the biotech field.

“Tools of genetics and modern biology should be made

freely available just as computer programming tools

were shared in the open source software movement,”

ABC Science Online reported in an interview with

Cambia’s founder, Richard Jefferson.28

Cambia has created a new program, Biological

Innovation for Open Society, to pursue support for

open access from the global biotech community, whose

tools typically carry restrictive patents. As Jefferson

said in a press release, “We have barely started to

unleash the potential of modern genetics to improve

crops and feed the world. The key, ironically, is human

creativity, and using technology and wise policy to

nurture the innate problem-solving capacity within

all people.”29

Open source is central to Cambia’s mission; the open-

access toolkit has been likened to Linux as the core

thrust of a burgeoning open movement in the biotech

industry. Cambia looks to all aspects of open source for

inspiration. As Jefferson told Australian Biotechnology

News, “By developing normative binding mechanisms,

like the general public license has done, we can use

the open source concept to bind the biotechnology

community to a commons of methodology, distinct

from the public domain, which is much abused.”30

SCIENCE
In science, new ideas and discoveries build from

previous work; having access to the latest scientific

findings and research is critical. There is a move to

make scientific and scholarly publishing more open

so that access to published information is faster and

more widespread than it has traditionally been through

journals and database searching.

“Preprint servers” emerged in the early 1990s as a way

to provide fast access, via free downloads, to articles that

have been peer-reviewed and submitted to journals but

have not been published yet (hence the term “preprint”).

In the late 1990s, taking the next step, the preprint

movement spawned the Open Archives Initiative, which

looked at how independent preprint server efforts

could cooperate to expand the openness of scholarly

publishing in general. The Open Archives Initiative

develops and promotes interoperability standards for

68

efficient content distribution. Although the initiative

has its roots in scientific publishing, it is developing

standards for open access to a wide range of informa-

tion, including social sciences and the humanities.

Another initiative tackling the challenge of timely,

accessible scientific materials is the Public Library of

Science. PLoS is a nonprofit organization of scientists

and physicians committed to making the world’s

scientific and medical literature a public resource –

that is, available free of charge to anyone anywhere.

“Immediate unrestricted access to scientific ideas,

methods, results, and conclusions will speed the progress

of science and medicine,” the PLoS Web site states.31

To this end, PLoS has two journals, PLoS Biology and

PLoS Medicine, in print and online (PLoS Medicine

launches in fall 2004). The journals contain full text

and data of published research articles. PLoS was

awarded the Wired Rave Award in Science in 2004

by Wired magazine, which lauded PLoS for “cracking

the spine of the science cartel” with its model for

open-access scientific publishing.32

Some have also called for an open source approach

to invent drugs that fight tropical diseases. A Web site

would be used by biologists and chemists to volunteer

their expertise in specific areas of certain diseases.

Scientists would work collaboratively, annotating

databases, conducting experiments and sharing

results openly, including having chat room discussions

about results. Ultimately, drug development would

be awarded to a laboratory via competitive bid, but

the drug would be released in the public domain for

generic manufacturers to produce, thus reaching the

widest audience at the lowest price.

MUSIC
Whereas open source in publishing refers mostly to

freely available information, in the world of music we

get back to the dual core characteristics of open source:

freely available information and collaborative creation.

The Open Music Registry promotes open source music

– music that is freely shared, listened to, modified and

distributed. It is a powerful tool for musicians and

those who love music. Though the site is dedicated to

non-commercial music, it is a proponent of artist com-

pensation and ownership (copyright) of musical works.

Music at the site is licensed under the Open Audio

License, created by the Electronic Frontier Founda-

tion. The license, founded on open source software

principles, states that its goal is to restore music copy-

right’s original purpose: “the creation of a vibrant

public commons of music that we all can enjoy and

that artists can build upon.” (Although the Open

Audio License was the driving force behind the Open

Music Registry, launched in 2001, today there is a

small selection of similar licenses artists can use instead

of the Open Audio License.) The registry is catching

on; from 2003 through March 2004 there have been

over 56,000 downloads of free music, or an average

of over 120 downloads a day.

Certainly music lends itself to open source, being

digital in form (and thus malleable and shareable

like software) and having already tested the waters of

freedom with peer-to-peer file sharing. Where music

goes with open source will be an interesting test of the

creative-commercial balance.

Meanwhile, if music is open source, what about the

air waves that carry it? The idea of open source radio

spectrum is being championed by David Reed, an

inventor of TCP/IP and creator of Reed’s Law of

group-forming networks. (See the LEF report “The

Architecture rEvolution.”33) Reed wants to open up

a portion of the radio spectrum and protect it via

the Creative Commons organization, a nonprofit

dedicated to creating public goods while preserving

some private rights.

Reed argues that spectrum is not a scarce resource

but is plentiful and should be free to anyone to use.

Users should be organized into a cooperative network,

not as discrete channels. By deploying a software-

defined radio device, each user added to the network

increases rather than decreases network capacity –

just like adding a node to the Internet increases its

capacity. Innovation occurs at the edge of the net-

work, where the users are; anyone with a good idea

can broadcast it without requiring permission from

a central authority or owner. In Reed’s vision, open

spectrum brings innovation in service of the public

good.

http://www.csc.com/aboutus/lef/mds67_off/index.shtml#reports
http://www.csc.com/aboutus/lef/mds67_off/index.shtml#reports

69

F U N FA C TO R :

Open Source Gets Your Creative Juices Flowing

COLLABORATIVE KNOWLEDGE
The notion of harvesting knowledge via open source

methods is well-exemplified by Wikipedia. In addition

to an open content encyclopedia, other examples of

open source collaborative knowledge are appearing

in text books, university courses and even cookbooks.

The Open Textbook Project is about creating text

books using open source methods. The books are to be

developed collaboratively and made available broadly

in the United States and elsewhere, ideally reaching

underserved markets. The collaborative model helps

ensure that material is up-to-date and tailored for

local audiences. Another project is Wikibooks, which

creates and disseminates open content text books,

manuals and other texts and currently has over 80

books in development.

In a similar spirit of access to knowledge regardless of

geography or income, MIT’s OpenCourseWare initia-

tive aims to distribute the university’s course material

free of charge via the Web to learners far and wide.

The idea for the initiative, formally launched in 2003,

came from the open source development model.

With material from 700 courses currently available,

and plans to incorporate all classes by 2008, MIT hopes

to revolutionize the way universities share information

and people learn.

On a lighter note, if open source can make you a

smarter person, it can also make you a better cook.

Several open source cookbooks are gracing the shelves

of cyberspace, inviting cooks of all kinds to use and

submit recipes. These constantly evolving works include

The Open Source Cookbook: Fuel for Geeks, Interna-

tional Recipes Online, the Cookbook of the Unix Group

at the University of Kaiserslautern (recipes in German),

and IT publisher O’Reilly & Associates’ Community

Cookbook, which plays off of O’Reilly’s programming

cookbook series (e.g., Apache Cookbook).

From cooking to crops to cholera treatment, open

source is sparking innovation in numerous domains.

With this comes an ideology of openness: providing

global access, enhancing knowledge and solving

problems for the greater good. As the Internet spills

over into our personal lives and all areas of endeavor,

more people outside the software arena will become

aware of open source and see its potential in many

new domains.

Open source has been likened to applied science:

developers, like scientists, explore new ideas that are

interesting and fun. They can’t wait to get their hands

on the code (or get back to the lab) to experiment and

tinker. They are driven by curiosity, a desire to learn

and share their findings with others, and a desire to

contribute something meaningful to the community.

For developers (or scientists), it is fun to solve a

problem, and they take personal pride in it. Because

it’s fun, they spend hours programming highly

original or useful tools, with amazing creativity and

dedication.

By the same token, these creative minds will stop

programming if they perceive it is no longer fun.

Organizations need to recognize that the fun factor is

a palpable element of open source development and

nurture it for project success. Don’t confuse “having

fun” with “having a party;” professional enthusiasm

and enjoyment contribute to individual performance.

Motivated employees who have fun on the job tend

to be more productive than others.

IT ’S ABOUT AT TITUDE, NOT AGE
There are people who develop for results and people

who develop for fame. Solving challenging problems

is fun. Creating a useful or fancy piece of software and

http://www.ibiblio.org/oscookbook/
http://www.internationalrecipesonline.com/recipes/
http://www.internationalrecipesonline.com/recipes/
http://kochbuch.unix-ag.uni-kl.de/
http://kochbuch.unix-ag.uni-kl.de/
http://cookbooks.oreilly.com/food/
http://cookbooks.oreilly.com/food/

70

being able to use it within minutes – no laborious

production process needed – is fun. Being known and

respected by colleagues, and even users, is fun.

It is also fun to “beat the system” and develop code free

from capitalistic constraints. (See Software Revolution.)

It’s cool to develop open source software. If you want

to prove that you’re smarter than the big corporations,

and you don’t want to do anything illegal, you do open

source development. This is not a question of age but

attitude.

Of course, fun is subjective; what’s fun for one person

may be dreary and tedious for another. That is where

the community comes in, as a hedge for varying

developer interests. Someone in the community will

find a particular feature or problem fun to work on,

and it will get done – though perhaps not on a strict

schedule, which can be a problem in open source

development. (More on that later.)

FUN AND GAMES
Open source development gives developers an oppor-

tunity to show off their talents. They can work on

what interests them, independent of work or school.

And so you see open source applications for a variety

of hobbies: a route-finder for cyclists (BBBike.de), a

beer site for home brewing (CyberBrau.org), an ebook

manager (eBookCollector.sourceforge.net), a family

genealogy tree (vjet.demon.co.uk/ftree).

Larger-scale projects focus on hobbies almost everyone

is interested in, like music or film. The Ogg multimedia

project, with its Ogg Vorbis open source audio format

(à la MP3), and the VideoLAN project, an open source

client-server video streaming solution, both offer high-

quality compression techniques for streaming audio or

video with no licensing fees.

Also in the video world, DivXNetworks worked on an

open source video codec (compression/decompression

software needed to play video files) as part of Project

Mayo, home of the open source video codec project.

Although the product was not released as open source

software – flaming controversy that the company used

the open source model to tap others’ ideas – a differ-

ent product stemming from Project Mayo, XviD,

ultimately was released as open source. XviD is a high-

quality MPEG-4 codec, with excellent compressibility

and advanced features. Because it is open source it

is free of license charges, customizable and has good

cross-compatibility among desktop operating systems.

Music and video are great fun as open source projects,

to be sure, but perhaps the ultimate in fun software is

computer games. Interestingly, most open source games

have not been particularly state-of-the-art, dogged

by poor screen design and low-quality animation.

However, this is changing as recent entrants have been

increasingly sophisticated.

One of these is PlaneShift, a multiplayer virtual fantasy

world with state-of-the-art 3D graphics. PlaneShift

is very active, with 20 core developers in the United

States, Europe, Canada and New Zealand and several

sub-projects. The fact that it is open source means

that users, as developers, can create elements like their

own house or castle, and everyone who plays can use

these creations and build on them to make new ones.

As PlaneShift’s Web site says, because of open source

development “the game will be expanded endlessly for

years to come.”34

PlaneShift believes strongly in open source, and in

successful and enjoyable games. For this reason the

company employs three licenses. It uses the GPL for

all source code except the rules (logic) of how the

game is played, and two more proprietary licenses for

the non-code assets of the game, such as artwork

and text. In justifying this strategy, the PlaneShift

Web site states:

We have seen too many [game] projects fail, and

it’s painful to see more when we know how much

effort has been put into them. We want to find a

way to gather all these individualistic developers

and create a successful project for the players,

but also for those developers that share the same

dream.35

Open source development gives

developers an opportunity to show off

their talents.

www.bbbike.de
www.cyberbrau.org
http://ebookcollector.sourceforge.net
http://www.vjet.demon.co.uk/ftree/

71

PlaneShift uses a mixed licensing scheme to support

two main goals: to keep resources united under one

project and avoid forked projects, and to ensure success

through uniqueness of the game. PlaneShift’s licenses

facilitate creativity among the development community,

while preserving as unique the creativity of artists and

designers who contribute.

A less graphically sophisticated, though no less chal-

lenging, open source game is NetHack, a single player

dungeon exploration game. Despite the game’s low-tech

ASCII interface, it is feature-rich in terms of its logic,

special levels, characters, items and concepts. NetHack,

first released in the 1980s, has a strong, almost cult-like

following and has even been fea-

tured in a comic strip. The NetHack

community provides a variety of

play scenarios and interfaces that

are a constant source of fun and

exploration for this Dungeons and

Dragons-inspired game.

SERIOUS BUSINESS
Games are fun – a playground for

the imagination and for attempting

new technical feats. But games are

also serious business. For some

game and toy companies, open

source is figuring into the business

strategy, with positive results.

Consider Doom, one of the grand-

fathers of computer games. When

Doom was released in 1993, it had ground-breaking

technology and superior playability. Keeping the

source code of the game’s engine, or platform, pro-

prietary was an economically sound choice for the

creator, id Software.

But as similar engines emerged, the value of the Doom

source code diminished. In 1997, id Software released

the Doom source code as open source under the GPL.

The company had a new engine about to come out, so

it decided to give away the current engine and position

the company as supporting open source. Other game

engines, notably id Software’s Quake, were later

released under the GPL also.

BioWare’s multiplayer game

Neverwinter Nights comes with an

editing tool that allows players to

create and share adventures of their

own. This open strategy was inspired

by the open source movement. The

screen shot shows a player’s character

negotiating with some NPCs (non-

player characters) in the environment

originally created by BioWare.

Source: Neverwinter Nights screenshot

courtesy of Atari Interactive, Inc.(publisher).

© 2002 Atari Interactive, Inc. All rights reserved.

Used with permission.

PlaneShift, a 3D fantasy game, is one of the most sophisticated open source

multiplayer games. (www.planeshift.it)

Source: PlaneShift

http://www.planeshift.it

72

BioWare, creator of Neverwinter Nights, also follows

an open strategy but in a different way. Instead of

laying open its source code, BioWare sells a toolset

that enables users to create entire worlds and charac-

ters of their own and share them with others. This was

a revolutionary idea at the time of the game’s release,

2002, and was inspired by open source.

“We had been watching the open source movement

with a sharp eye and we saw the emerging strength of

open collaboration,” recalls Trent Oster, producer of

Neverwinter Nights. “When we first started talking

about the editing tool we were concerned that creat-

ing a module on your own would be too much work.

Our hope was that, in an open source fashion, the fans

of the game would begin to share work and expertise.

Soon after the game shipped we saw the strength

of our community as they divided work among

experts and quickly began supporting the development

efforts of various groups. To date the community has

accomplished some truly amazing things through this

collaboration.”

Neverwinter Nights has been a

great success, with 1.7 million

registered users and 30,000 unique

users logging on per day. There

are over 2,700 self-created modules

available at no charge via the

Internet. These creations are ex-

tending the lifespan of the game,

which continues to sell well today.

Neverwinter Nights earned a spot

in FiringSquad’s Top 10 PC Games

list in 2004.

Another place where an open

approach has become part of the

business strategy is at toy maker

LEGO. The company’s LEGO

MINDSTORMS programmable

robotic toys, introduced in 1998,

were reverse-engineered years ago

by well-intentioned hackers. As

schematics were posted on the

Internet and open source develop-

ment tools began to appear, the

company decided to embrace the

open movement, opening up the product specifications

and providing support for open source programmers.

LEGO made the product easier to program and

published advanced programmer kits and documenta-

tion on the Internet, at no charge.

The results have been impressive. According to one

account in Software Development Times: “A bustling

community has grown up around Mindstorms. Open

source development systems based on C, Java and Forth

have appeared. Programmers share expertise and source

code on dozens of news servers and Web-based com-

munity sites, including sample code in C++, Perl, Tcl,

Visual Basic, Delphi and Scheme. One enterprising group

of programmers has even developed an open-source

operating system for the robots, allowing developers to

control the devices in arbitrary and complex ways.”36

LEGO’s move into open source dovetails nicely with its

slogan “Play On.” The slogan, as described in a company

profile, “focuses on open play, which can continue

LEGO MINDSTORMS robots have enjoyed attention from the open source

community. LEGO has supported open source programmers eager to dig into

the inner workings of the programmable robotic toys and create new features.

Source: The LEGO Group

© 2004 The LEGO Group

73

without limit or conclusion” – exactly like open source

development. Just as children learn through play, open

source developers learn through fun.

Play inspires the worlds of government and business

too. Connections between computer games and the

military go deep, for training and simulation exercises.

Scenario planning in business, as well as modeling and

simulation, draw from gaming. Doom has even been

considered for a system administration tool, as an inter-

face that provides a more intuitive environment. (Kill

that errant process!)

LESSONS LEARNED
So, while games are about fun and play on the surface,

they go deeper than that. Organizations can apply

lessons from open source games to their IT strategy,

integrating creativity with efficient project manage-

ment. Organizations can encourage the open source

community to focus on extensions that differentiate

an existing product or platform, thereby extending

its lifecycle. The organization is the hub of core devel-

opment and provides the tools the community needs

to be creative.

The fast-paced game industry reminds us that open

source development, in contrast, is often not as fast-

paced. In fact, most open source projects are not driven

by time lines. The lesson for project managers is this:

if your project uses open source software, only use

existing features, because you can never be sure a

feature you need will be built on time.

Also, organizations are always desperate for IT talent.

Smart ones will scout the game world, both open and

closed source, for creative technical minds.

Remember, to play is to learn. Play influences work and

how business can be done, sparking creativity and moti-

vation. The fun factor that open source imparts should

be recognized and harnessed for business success.

74

L E G A L A N D B U S I N E S S I S S U E S *

Open source legal and business issues need to be taken

seriously. Intellectual property issues are at stake,

unlike in a closed source world where source code is

not shared. Organizations need to be disciplined about

their use of open source software. Adhering to software

licensing rules is not new, but what is new is the wide

array of license obligations or requirements introduced

by the open source movement. Organizations must

consider a number of legal, commercial and policy

issues as they embark on using open source software.

LEGAL CONSIDERATIONS
The Treasure Chest shows there are endless opportu-

nities for realizing business value from open source

software. However, before an organization uses open

source software, it must understand that although the

source code may be free to use, it is not free of obliga-

tions. Non-compliance with these obligations could

negate the organization’s right to use the software, and

in certain circumstances non-compliance could signal

breach of contract, making the organization poten-

tially liable for financial damages.

There are two key points to understand about using

open source software:

Unless the software has been put into the public

domain (that is, the author has given up to the

general public all rights of ownership, including

copyright over his or her created work), one’s access

to open source software is subject to stated conditions

of use determined by the owner. These conditions are

the license terms.

The license terms may be different than other more

familiar software license terms, and in some cases the

open source license terms may defeat the reason you

wanted to use open source software in the first place.

If we start with the premise that Linux is the best

known example of open source software, then it is

important to understand that Linux was made avail-

able to the community by Linus Torvalds using a

license agreement created by Richard Stallman, founder

of the Free Software Foundation. That license is the

General Public License.

The GPL – Free Speech, Not Free Beer
The GPL is more than a set of terms and conditions

of use. It is also a political manifesto that sets out

the vision for a widespread software community where

software is developed by a collaborative effort and made

freely available to all.

This set the early benchmark for the trade-off for the

right to use open source software.

Stallman refers to four types of freedoms that enshrine

free software:

1. the freedom to run the program for any purpose

2. the freedom to study how the program works and

to adapt it to your needs (access to the source code

is a precondition for this)

3. the freedom to redistribute copies so you can help

your neighbor

* This chapter raises legal issues that may be relevant and should be
considered in certain circumstances when open source software is to
be used. This chapter is not intended to be exhaustive or compre-
hensive, nor does it constitute legal advice on which organizations
should rely. If in doubt, consult your legal advisor.

Legal commentators representing the various interests of open source
advocates and who were among the first to identify or comment on
legal issues surrounding the use of open source software include Eben
Moglen (Professor of Law & Legal History at Columbia Law School
and General Counsel for the Free Software Foundation), Lawrence
Rosen (attorney and founding partner of Rosenlaw & Einschlag and
past General Counsel and Secretary for the Open Source Initiative)
and Lawrence Lessig (Professor of Law at Stanford University).

75

4. the freedom to improve the program and release

your improvements to the public, so that the whole

community benefits (again, access to the source code

is a precondition for this).

Stallman has famously described these freedoms, and

the concept of free software, as being free in the sense

of free speech, not free beer. It’s about liberty, not price.

The Catch
Although these four freedoms are incorporated in the

GPL, the GPL also includes a number of restrictions.

In particular, the GPL has a provision that any new

work that contains, in whole or in part, open source

software licensed under the GPL must also be licensed

under the GPL.

Therefore, a software developer who combines

software licensed under the GPL with his or her own

proprietary software, thereby creating a derivative

work for distribution or sale to a third party, would

be required to license his or her own proprietary soft-

ware under the GPL. This result has been described as

“viral” or “infectious” in nature because the GPL terms

self-replicate to the original program. (Supporters

of the GPL would say that the impact is not viral at

all but based on reciprocity.) Thus, the software devel-

oper would be required to publish his or her entire

source code. This applies even if only a few lines

of GPL code are incorporated in the developer’s

proprietary software.

This has unnerved software development organi-

zations that have expended many millions of R&D

dollars to create source code that is viewed as propri-

etary and therefore closed code.

For example, a program that incorporates both open

source and proprietary code in a single code block

would require the proprietary source code to be dis-

closed to ensure compliance with the terms of the GPL.

This is the basis of the concept of “copyleft.” A

copylefted license reverses the traditional licensing

concepts by using the license to give the licensees

more freedom rather than more restrictions (which

is usually the case where the copyright owner has the

exclusive rights). So copyleft mandates that everyone

has the right to use, modify and redistribute a pro-

gram’s code or any program derived from it upon the

same terms. (Now, an attorney may argue that this is

just a different use of copyright law; instead of stating

that there is a requirement to pay $X for a license to use,

the requirement of the owner in return for the right to

use is to provide a copy of the subsequent developer’s

source code.)

If you think this is all theoretical or academic, think

again. Less than a week after Sun pledged to make

available the source code of its Solaris operating system

to the open source community, SCO was reported

in the press as stating that its license restrictions pre-

vent Sun from contributing Solaris to the GPL

because Solaris includes code licensed from SCO

under another form of license. (The SCO v IBM case

is discussed later.)

If Sun did release the Solaris open source code under

the GPL, then theoretically it would also have to

release those parts of the Solaris code that have been

developed in-house.

It should be emphasized that this viral effect applies

only to the creation of a derivative work based on a

GPL-licensed work, as distinct from running a

proprietary work with a GPL-licensed work. In the

latter case, using Linux as an example of a GPL-

licensed work, a proprietary program running with

Linux neither contains nor is derived from Linux,

so the viral effect does not apply.

The Concession
Recognizing the potency of the viral effect, the Free

Software Foundation subsequently introduced the GNU

Lesser General Public License (LGPL), which permits

LGPL-licensed software libraries to be linked to non-

LGPL-licensed software in a less restrictive way. The

LGPL allows proprietary software to be used in

connection with GPL software through the use of

programming libraries without requiring the pro-

prietary software to be subject to the GPL (or LGPL)

provisions. This concession was made as “there may

be a special need to encourage the widest possible

use of a certain library so that it becomes a de-facto

standard.”37

76

Two examples illustrate how the LGPL works:

An LGPL library “X” can be linked with BSD-style

licensed software “Z” and the resulting package “XZ”

can be distributed as a whole without requiring that

“Z” be licensed under the LGPL.

OpenOffice.org, which makes its source code

available under the GPL, licenses the libraries and

component functionality of its Opensource.org

source code under the LGPL. OpenOffice.org also

supports the dual-license model by making a version

of the software available commercially using the

Sun Industry Standards Source License. (The dual-

license model is discussed later.)

The above analysis is intended to draw attention to a

concern with a particular requirement of the GPL. For a

software author who wishes his or her code to be freely

available, and who hopes to receive contributions from

other users of his code, the GPL may be ideal. This is

particularly the case if the author holds the view that

no one should profit from the author’s work by seeking

to exploit the fruits of another person’s labor.

But is forcing someone to release their source code

consistent with the concept of free software? As the

author, you may want other users to do as they wish

with your code. However, perhaps by shutting out the

software development organization that historically

has distributed closed source code, the user community

misses out on positive contributions – or the organi-

zation develops its own (non-infringing) version.

In addition, if a traditional closed source organization

were to incorporate open source code into its products,

it may actually benefit the open source community

because it may be easier for customers of that organi-

zation to subsequently switch from the proprietary

product to the open source equivalent. There may be

more job opportunities for open source software

developers inside the organization once its products

incorporate open source code. Some food for thought.

Criteria – A Plethora of Licenses
Because of the restrictive nature of the GPL and

the connotations of the word “free” when applied to

software championed by the Free Software Founda-

tion, the Open Source Initiative was created in the

late 1990s and the term “open source” was officially

adopted.

Two expressions often used interchangeably are
“free software” and “open source software.”
Although the distinction may be academic to many,
to the supporters of the Free Software Foundation
on the one hand, and the Open Source Initiative on
the other, the distinction is the subject of heated
debate – a purist versus pragmatic view. This
chapter employs the more frequently used “open
source software” unless otherwise required.

The leaders of the Open Source Initiative (including

open source advocate Eric Raymond) created the Open

Source Definition, a set of standard criteria that open

source licenses are required to incorporate so as to be

“OSI Certified.” These criteria include:

Free redistribution – The user has an unlimited right

to give away the software royalty-free to third parties.

Source code – Source code must be available in a

form suitable for modification.

Derivative works – Derivative works and other

modifications must be permissible and must allow

for their distribution under the same terms as the

license of the original software.

Integrity of the author’s source code – The license

may restrict source code from being distributed in

a modified form if the license allows distribution of

patches with the source code, so that patches can

readily be distinguished from the base source code.

Distribution of license – The rights of the license

automatically pass through to all to whom the soft-

ware is distributed (that is, the software can be redis-

tributed to third parties without the permission of the

original author).

Non-discrimination – Usage cannot be denied to any

person, group or field of endeavor.

These criteria have resulted in a plethora of licenses

that can be used with terms that embrace a broader

definition of open source software. A number of these

licenses specifically reject the viral nature of the GPL

while still requiring source code to be made available.

These licenses arose from the desire to ensure the

continued involvement of commercial organizations

77

in open source projects. Also, these licenses recognize

that in some cases a commercial organization may not

own all the rights to the code intended for public

release – for example, where the existing code includes

embedded software or other third party software subject

to license terms that do not permit release under the

terms of the GPL.

In addition, there are many other licenses that deal

with open source but have not been approved by the

Open Source Initiative because they do not comply with

all the requirements of the Open Source Definition.

One example is the Sun Community Source License,

which is not available to everyone as it only pertains to

countries that Sun believes offer reasonable prospects

of intellectual property protection and enforcement.

The variety of open source licenses provides many

opportunities for organizations to participate in the

open source movement, whether to seek the benefits

of the work of others, make contributions or just

borrow code. A table comparing common open source

licenses appears on pages 78-79. Two important items

to highlight are:

BSD License – Developed by the University of

California at Berkeley, this license requires the

developers to receive proper credit but permits

modifications of open source code to be turned

into proprietary, closed source code. Thus the BSD

does not contain the copyleft restrictions found in

GPL-style licenses.

Mozilla Public License – Open source files (referred

to as “covered” files) can be used with a commercial

entity’s own files provided the covered files are

not modified. If the covered files are modified,

those modified files must be distributed as MPL

files. The MPL enables proprietary and open source

software to work together.

It is not uncommon to find articles comparing the

virtues of the various open source licenses and

acknowledging the complexities that arise. To wit: a

commercial organization may modify open source

software and license it back to the author but retain

the rights to use that modified code in a proprietary

application. In addition, from a legal perspective it

is not always clear whether one work is derived from,

or is a modification of, another work.

In addition to license variations, another approach

to encourage commercial involvement is the dual-

license model typified by MySQL AB, Trollech AS and

Sleepycat Software. Under this model vendors offer

their products under both an open source license and

a commercial license. This allows open source projects

to use the software at no cost (thus encouraging wide-

spread use and testing), while organizations that wish

to redistribute the software as part of a commercial

product can do so by purchasing a commercial license.

The organization is not required to publish or other-

wise disclose its source code. Under the dual-license

model, then, a product can be simultaneously licensed

on different terms to different users for different

purposes (e.g., under the GPL and under a commer-

cial license).

From a license perspective, another way to illustrate

the impact of the various open source software licenses

is depicted in the inverted triangle on page 80. The

triangle shows how both GPL-style licenses and pro-

prietary licenses require strict compliance with their

respective terms, notwithstanding that the two types of

licenses are at opposite ends of the triangle on the issue

of ownership and availability of their respective code.

What Happened to Warranties?
Users of software products expect a number of (albeit

limited) warranties from the licensor, for they give

the user some comfort by way of recourse in certain

circumstances.

However, it is not unusual for the license terms

that govern a person’s use of open source software

to be minimal to lacking in terms of warranties,

specifying that:

the software is provided on an “as is” basis

all warranties relating to use or performance are
disclaimed

there is an exclusion of any liability (or liability is
severely limited) by the licensor

no indemnity is provided by the licensor against
claims of intellectual property infringement by third
parties brought against the customer.

78

GNU General Public License
(GPL) Version 2

License can be used for any software;
however, it may not be modified.

The licensee may charge a fee for the
physical act of providing its customers with
a copy, and may also charge a fee for any
additional warranty protection offered.

Redistribution (including any modifications)
must be on the terms of the GPL.

Any redistribution must be accompanied
by source code, or the licensee must offer
to provide source code on request for a
period of at least three years.

Any work that in whole or in part contains,
or is derived from, the licensed software
must be distributed under the GPL, but
independent and separate works that are
not derived from the program need not be
so licensed. The mere bundling of separate
software on the same distribution medium
does not bring the separate software under
the GPL.

No warranties and complete exclusion
of liability to the extent permitted by law.
The licensee can offer warranties to its
own customers if it chooses to do so.

None

License automatically terminates on breach
by the licensee of its terms.

GNU Lesser General Public
License (LGPL) Version 2.1

License can be used for any software;
however, it is designed primarily for use
with code libraries. The license may not
be modified.

The licensee may charge a fee for the
physical act of providing its customers with
a copy, and may also charge a fee for any
additional warranty protection offered.

Redistribution (including any modifications)
must be on the terms of the LGPL or the
GPL.

Any redistribution must be accompanied
by source code, or the source code must
be accessible from the same place as the
object code.

A “work that uses the library” by being com-
piled or linked with it, and which contains no
derivative of any portion of the library, falls
outside the license. However, where soft-
ware contains portions of the library as a
result of such compilation or linking, that
software may be distributed under any
license terms provided that they permit
modification for the customer’s own use
and reverse engineering for such purposes.

No warranties and complete exclusion
of liability to the extent permitted by law.
The licensee can offer a warranty to its
own customers if it chooses to do so.

None

License automatically terminates on breach
by the licensee of its terms.

BSD License
July 1999 version

License can be used for any
software.

No express provisions.

Redistribution provided conditions
in BSD license are met.

No requirement to make source
code available.

No express provisions.

No warranties and complete
exclusion of liability.

None

No express termination provisions.

Major Open Source Licenses

Use of License

Fees

Redistribution

Availability of
Source Code

Application to
Other Software

Warranties and
Liability

Governing Law

Termination

Source: CSC with Gilbert & Tobin, Australian Attorneys

79

Mozilla Public License (MPL)
Version 1.1

License may be modified and applied to
other software provided it is renamed and
otherwise makes clear that the new license
contains different terms.

The licensee may charge a fee for any
additional warranty, support, indemnity
or liability obligations offered.

Modifications must be licensed under the
MPL. Covered code (original licensed soft-
ware and any modifications) not released
as source code can be distributed under
different license terms, provided the license
complies with the MPL.

All modifications must be made available in
source code, either on the same media or
separately available. For the latter, modifi-
cations must remain available for at least
12 months from becoming available or six
months after a subsequent version has
been made available.

The licensee may combine the software
with other programs, in which case these
other programs are not affected by the
MPL. However, the licensee must still
comply with the MPL for all covered
code (original licensed software and any
modifications).

No warranty. Total exclusion of liability,
except liability for death or personal injury
resulting from a party’s negligence to
the extent applicable law prohibits such
limitations.

California

License automatically terminates if license
is breached and licensee fails to remedy
within 30 days of becoming aware of the
breach (all properly granted sublicenses
survive). The license also provides for
termination where the licensee brings
a patent infringement claim against a
contributor.

IBM Public License
Version 1.0

License can only be used for the licensed
IBM software and contributions.

No express provisions.

If distributed in source code, must be
under this license agreement. If distributed
in object code, may be under a license
of the licensee’s choosing, although that
license must then comply with certain
conditions.

Any object code redistribution must be
accompanied by the source code.

The license expressly states that it does not
apply to: (a) separate software modules
distributed with the licensed software
under their own license terms, or (b) any
software that is not a derivative work of
the licensed software.

No warranties and complete exclusion
of liability. Where the licensee includes
the software in a commercial product, the
licensee must indemnify any other software
contributors against certain third party claims.

New York

License automatically terminates if:
(a) license is breached and the licensee
fails to remedy within a reasonable period
after becoming aware of the breach; or
(b) the licensee institutes patent infringe-
ment proceedings against a contributor.

Apache License
Version 2.0

License can be used for any software.
However, Apache Software Foundation
projects must use this license and there
is no dual license model.

The licensee may offer a fee for warranty,
support, indemnity or liability obligations
to its customers.

Redistribution must be on the terms of this
license (including compliance with notice
requirements, and the right to license
modifications on different but consistent
terms and conditions).

No requirement to make source code
available.

No express provisions.

No warranty and exclusion of liability
for indirect or consequential damages to
the extent permitted by law.

None

No express termination provisions.
However, license automatically terminates
if licensee institutes patent infringement
proceedings against any entity.

80

This circumstance arises because the very size of the

user community can make it impossible to identify

what attorneys refer to as the “chain of title” – the

transparent history that determines ownership of a

software product. Without a warranty from the licensor

that it has the rights to license the product to a user and

an indemnity to protect the user against a claim brought

against the user by a third party, the user has no legal

recourse should the user suffer damage as a result of

being sued for (wrongfully) using the software.

In addition, the user is left to defend on its own any

third party claim alleging infringement of the third

party’s intellectual property rights.

Finally, the user has no remedy if use of the software

fails to meet the user’s needs or expectations.

The absence of any warranties and indemnity for third

party claims highlights a significant difference from

the more traditional software licensing model. This

applies equally to obscure and more mainstream

open source software. (For example, see the IBM

Public License Version 1.0 in the table on page 79.)

It should be noted that the numerous exclusions from

liability or responsibility expressed in the various open

source software licenses may mean that such agree-

ments are not enforceable.

For example, an open source license is a contract and

requires the giving of “consideration” to be enforce-

able. However, where one party to the contract under-

takes to do something, but then excludes its liability

for failing to do so, there may in fact be no promise

at all (and therefore no real consideration). If this was

a correct view, then the contract would never come

into effect and the licensor would be deprived of the

benefit of the exclusionary provisions.

Another issue that applies principally to GPL-style

licenses arises because the license states that its terms

apply automatically to a person who distributes code

that contains GPL source code, whether or not the

distributor was aware of the GPL terms or even that a

small percentage of open source code is embedded in

the product. This concept conflicts with many basic

principles of contract law in various countries.

The SCO Case
SCO v IBM should not necessarily be seen as a case that

arises only because its subject matter relates to use of

code to create open source software. (In this case, SCO

alleges that a portion of SCO’s UNIX code has been

copied by IBM and incorporated into Linux). This is

essentially a case concerning a claim by SCO of breach

of contract on the basis that its intellectual property

rights have been infringed by IBM or by a breach

of confidential information by IBM.

Public Domain

GPL Commercial

License
Obligations

Proprietary-ness

LGPL

MIT License

BSD License

Apache License

Mozilla License Shareware

zlib/libpng License

“Copyleft”

In this overview of software licenses,

the three corners of the triangle

represent the primary license types:

GPL, commercial and public domain.

As you move away from the corners,

you see license variations. GPL and

commercial licenses carry the most

license obligations but are at opposite

ends of the proprietary scale regarding

source code ownership and availability.

Public domain software has no license

at all.

Source: CSC

SOFTWARE LICENSE OVERVIEW

81

IBM counter-sued, ironically, asserting that SCO was

in breach of the GPL and had, in turn, breached certain

IBM patents. This resulted in an additional counter-

claim by SCO that included a claim that the GPL was

unconstitutional under U.S. law because its terms were

inconsistent with U.S. copyright law.

SCO has since upped the ante by commencing legal

action against end users Daimler-Chrysler and

AutoZone, whom SCO alleges have been using the Unix

code that is the subject of SCO’s claim against IBM.

Should the SCO case ever get past the initial jousting

stage and be heard in court, the validity of the GPL as

a legitimate and enforceable set of terms and conditions

may be determined.

However, the case highlights the ever-present risk of

third party infringement claims based either on breach

of copyright or infringement of a patent right. As open

source software licenses like the GPL specifically dis-

claim any liability for infringement of intellectual

property rights, it is entirely plausible that a developer

could copy existing proprietary code (thereby infringing

the copyright of the owner) and use it as the basis

of an open source solution, which in turn is widely

distributed in the marketplace.

In fact, a company in the United States, Open Source

Risk Management LLC, has been established to offer

insurance against what it deems a near-certainty: that

lawsuits similar to SCO’s will be brought against Linux

vendors and users.

The GPL in Court
Recently, in what may be the first judicial decision

about the GPL, a Munich District Court granted a

preliminary injunction in April 2004 against Sitecom

Germany GmbH as sought by the netfilter/iptables

open source project. Sitecom was offering a wireless

access router product based on software licensed under

the GPL and developed by the netfilter/iptables project.

According to the court order, Sitecom did not fulfill

the obligations imposed by the GPL that applied to

the netfilter/iptables software, as Sitecom refused to

make its source code offering available to the user

community and refused to make its product available

to users under the terms of the GPL.

The injunction prevents Sitecom from distributing

its product unless it complies with the obligations

imposed by the GPL. At the time of writing, it was not

clear how Sitecom would respond.

COMMERCIAL CONSIDERATIONS
Does the SCO case mean it is unsafe to use a solution

that incorporates open source software? Absolutely

not. What the SCO case reminds us is that there

is often complexity around who actually owns the

copyright in software code.

Indemnity Plans for Open Source Software
With respect to the actual claims made by SCO, and to

address the fears of Linux licensees, some distributors

such as HP have announced that they will provide

an indemnity to new (and existing) customers who

purchase Linux from them, provided the customer

does not make any unauthorized changes to the Linux

source code. In addition, the customers have to agree

to only update their operating systems with changes

made by their Linux provider, such as Red Hat or

Novell/SUSE. HP felt the need to provide this indem-

nity to give its customers the comfort necessary to

continue with Linux deployments.

Similarly, Sun has agreed to indemnify its customers

who use its Linux-based Java Desktop System and its

Solaris operating system.

It is likely that HP and Sun feel reasonably comfortable

that SCO’s case is unlikely to succeed. If that is not the

case, the financial impact on HP and Sun could be

considerable.

Proprietary Licenses that Restrict Indemnity
There has been a recent trend for proprietary software

vendors to vary their standard license terms to

exclude liability for any embedded software that may

be contained in their software product, whether or

not the embedded software had it origins as open

source software.

82

For example, one leading OEM states in it software

license agreements that it has no obligation to indem-

nify the licensee for a claim by a third party alleging

infringement of its intellectual property rights, where

the claim is based on “third party code, including but

not limited to, open source code.”

Now, if the licensee knows that it is licensing open

source software, such an exclusion may be reasonable.

However, for a licensor to make the licensee assume

complete risk for whether or not there is any embedded

software in the licensor’s product seems to be non-

sensical and should be rejected by the licensee. Other-

wise, one of the fundamental protections that a licensee

should receive from the party who is in the better

position to know the content of its software will have

been lost.

Accountability
As noted in the Treasure Chest, customers want

innovative solutions that are rich in functionality,

minimize costs and are available quickly. This puts

considerable pressure on the software company or

service provider.

Some customers are unlikely to accept support that

relies on developer mailing lists, newsgroups or peer

user groups. These customers expect suppliers to be

accountable and to stand by their deliverables. So

although open source software is usually provided on

an “as is” basis, a software company or service provider

that delivers a solution incorporating open source

software can expect its customers will want not only

warranties covering the performance of the delivered

solution but also a commitment to ongoing support

and an indemnity against third party infringement

claims.

With no “back-to-back” warranties or indemnities from

the open source community to protect those who devel-

op with open source software, the software company or

service provider needs to accept that it is assuming a

certain amount of potential exposure for which it

cannot seek adequate redress.

Government Perspective
Certainly there is global interest at the government

level in adopting open standards and, at times, specifi-

cally endorsing the use of open source solutions. This

is usually justified on the basis that governments wish

to be vendor independent.

A recent example is the decision by the city of Munich

to deploy Linux and other open source desktop appli-

cations across its 14,000 computers in its public

administration.

The U.S. Department of Defense accepts open source

software solutions for projects undertaken for the

DoD. However, in a memo dated May 28, 2003, John

Stenbit, Assistant Secretary of Defense and DoD’s

Chief Information Officer, noted that open source soft-

ware licensed under the GPL included restrictions that

would still need to meet government policy. The impli-

cation is that GPL code has the potential to conflict

with DoD requirements. Accordingly, Stenbit’s memo

made it clear that a vendor must ensure that any open

source software solution complies with all lawful

licensing requirements:

As licensing provisions may be complex, the DoD

Components are strongly encouraged to consult

their legal counsel to ensure that the legal

implications of the particular license are fully

understood.38

POLICY CONSIDERATIONS
It is clear that if open source code is used, the software

development organization must fully document and

retain the knowledge concerning that code.

Why is this all necessary? Because it would be naive to

believe that every employee of a software development

organization is meticulous in tracking the origin of

all code that person uses in providing a deliverable.

Why create code when existing code can be re-used?

With easy accessibility to so much open source code,

literally at the touch of a key on the keyboard, the

likelihood of open source code finding its way into

proprietary code is hardly far-fetched.

83

An internal approval process involving technical and

quality assurance, along with sign-off from business

and legal representatives, is necessary. This approval

process needs to:

Have the ability to capture and identify the proposed
use of any open source software.

Consider why there should be use of that particular
open source code.

Determine whether the use is consistent with busi-
ness strategies of the organization.

Ensure that any employees or contractors writing
code for the organization have agreed in writing
that the product of their labor will be owned by
the organization.

Confirm the code has previously been approved
internally for use with respect to both technical
specifications and license terms.

Identify who will monitor ongoing compliance with
applicable license terms, support and quality issues.

In addition, if the code has not been approved, then it

may be prudent that:

Legal advisors review the license terms.

The bid or delivery manger reviews the business
issues surrounding the use of the proposed code as
part of a solution.

Quality assurance, delivery assurance or the equiva-
lent group determines the likely costs of support and,
where appropriate, provides sign-off on the technical
issues.

Perhaps historically not that much attention was paid

to the intellectual property pedigree of code used

within a software solution. But with ready access to

open source code and the recent SCO litigation,

organizations are becoming much more focused on

the origin and conditions of use that might apply to

code within their software solutions.

Not surprisingly, a potential auditing and management

tool for detecting and managing proprietary and

open source code has arisen to assist in maintaining

quality control of the use of open source within an

organization.

Although its product is still in development, Black

Duck Software claims to have a tool that can “identify

open source code residing in development projects and

recognize potential licensing problems….[so] you can

enjoy the advantages of open source software while

mitigating management challenges and IP [intellectual

property] risks….”39

Will it be able to decipher an entire source tree and

determine that certain lines are from, say, an Eclipse

project licensed under the Common Public License

and other lines are a module governed by the GPL?

Time will tell, but one can reasonably expect that the

open source community itself will find a solution.

Though the existence of open source software is well

known in the IT industry, the obligations that attach

with its use are not. In particular, the GPL – though

the source of much software innovation – may have a

detrimental impact on commercial organizations

whose business is the licensing of proprietary software.

Such companies must understand the fine print and

put in place appropriate processes to vet any intended

use of open source software.

In addition, software companies and service providers

must realize that ultimately they will have to take on

the risk and provide warranties to any customer they

provide a software solution to that incorporates open

source software. Customers will not be interested in

altruistic notions of free or open software; customers

just care that the software works.

Open source solutions are safe to use despite the SCO

case. For industry and government organizations

seeking to reduce ongoing IT costs or looking for new

applications with richer functionality, the opportunities

with open source are virtually limitless. All potential

open source customers must understand the open

source software and licenses they intend to use,

particularly when undertaking development in-house.

They can also rely on their trusted service provider to

ensure compliance – that is, leave it to the experts.

Open source is here to stay. Organizations around the

world are using open source software. Businesses,

governments and even software vendors are weighing

in, backing the movement.

Starting with the software infrastructure, where open

source software dominates, and moving up the stack,

numerous open source software products are meeting

growing acceptance, especially for operating systems,

database management systems and consumer software.

Commercial Linux distributions deliver out-of-the-box

desktop software for consumers and come bundled

with office and multimedia software that was once

available only in the Microsoft environment.

Open source offers an alternative, one that organiza-

tions need to consider in their IT strategy. Open source

may not be for every situation, but in that case organi-

zations should understand why. Organizations must

examine the business value of open source (see Business

Value of Open Source chart below) and look closely

at their IT infrastructure and development processes.

84

G E T T I N G S TA RT E D

* cost reductions (outsource, open source, commodity computing, etc.)
* technology transparency (easier to integrate, interoperate and adapt)
* security/risk management (higher availability due to lower vulnerability)
* time to market (faster deployments = competitive edge)
* new opportunities (new business possibilities with open source)

Culture of Community

Moving Up the Stack

Mission Critical

Sweet Spot

Software Revolution

At Your Service

Invisible Man

Market Force

New Domains

Fun Factor

Cost
Reductions

Technology
Transparency

Security/Risk
Management

Time to
Market

New
Opportunities

most valueleast value

The open source value proposition varies by organization and situation. One way to assess the business value of open source

is to examine the report trends against five key business drivers. This matrix, while not an exact science, helps organizations

focus on the areas of greatest opportunity by illustrating which trends play strongest in which areas.

Source: CSC

BUSINESS VALUE OF OPEN SOURCE

Following are steps organizations should be taking to

start on their open source journey.

FROM A BUSINESS STRATEGY VIEW:

Have a clear understanding of the reasons to use or
migrate to open source software.

Understand the potential switching costs of moving
from proprietary software to open source software.

Look for “sweet spots” in the business with high
potential return from using open source software.

Identify important TCO components for your spe-
cific situation when calculating TCO. Ask: Is the
difference between proprietary and open source
software worth the money? To what extent are you
buying peace of mind from the proprietary vendor?

Use open source software as a negotiating tool with
proprietary vendors.

Consider releasing internal software as open source
if it is not a strategic differentiator (e.g., if a bank
develops a technical framework for EAI it might
release the framework to the open source communi-
ty, but if a bank develops a new banking transaction
system it would not dare share it). This spreads
development costs, improves quality, increases
usage, and potentially creates an industry standard,
positioning the originating organization as a leader
and innovator.

Discuss what role the organization should play in
the open movement.

FROM AN ADMINISTRATIVE VIEW:

Develop legal expertise internally about open source
licensing.

Be sure developers understand the open source
licenses they are using to ensure compliance and
to understand liability and accountability.

Update human resource policies on intellectual
property to reflect open source.

Ensure that there is active support for open source
from IT staff and users.

Establish a change management plan for moving to
open source.

Identify a champion for change – the higher up in
the organization the better.

Ensure that each step in an open source migration
is manageable.

Create teams with appropriate skills and manage-
ment backing.

FROM A TECHNICAL VIEW:

Build expertise and relationships with open source
vendors and the open source community.

Encourage developers and system administrators to get
involved with open source projects that relate to their
jobs.

Create a “safe list” of open source software for the organ-
ization to use or consider, and keep the list current.

Launch trials of the most promising opportunities; start
with non-critical systems.

Assess open source software for interoperability.

Assess open source software for platform independence.

Design security in from the start.

Develop policies for promoting and using open source
software (e.g., policies for infrastructure, software
development, mission-critical applications, security
applications).

Consider contributing software to open source projects
to build trust and improve your credibility in the com-
munity. This will greatly improve the community’s
willingness to provide support for you and your ability
to tap the community’s resources.

Open source will continue to gather strength in the

market. Open source is a global movement, but adoption

– and attitudes toward open source in general – vary

widely country by country.

Open source is an opportunity for service providers, who

are well-positioned to play the role of trusted support

provider and fill the accountability gap. CSC is committed

to the open source movement; the company has many prod-

ucts, services, individuals and engagements that have made

extensive use of open source software, including, in some

cases, contributions back to the open source community.

CSC does not view open source as an either-or battle with

proprietary software vendors; rather, open source is about

understanding the value that a higher degree of openness

and collaboration can bring and applying that to the

business.

For consumers, producers and service providers, the time

is ripe for getting started with open source. It is a business

decision, one to be factored into IT strategy and the

software mix. Wise companies will manage and leverage

open source, not ignore it. Open source is here to stay.

Open source is open for business.

85

86

1 Christopher Koch, “Your Open Source Plan,” CIO Magazine,

March 15, 2003. http://www.cio.com/archive/031503/opensource.html

2 “Open Source in the Running for 30 Percent of New Systems,”

Gartner Symposium ITxpo 2003, March 10, 2003.

http://symposium.gartner.com/story.php.id.3390.s.5.html

3 John D. Wolpert, “Breaking Out of the Innovation Box,”

Harvard Business Review, August 2002, p.4 (reprint).

4 For an in-depth discussion of the network effect see “The Architecture

rEvolution: Exploring the Network Effect on Infrastructure,

Applications and Business Process,” CSC LEF Report, 2003.

http://www.csc.com/aboutus/lef/mds67_off/index.shtml#reports

5 “The Cathedral and the Bazaar,” Eric S. Raymond, September 11, 2000.

http://catb.org/~esr/writings/cathedral-bazaar/

cathedral-bazaar/index.html

6 “A Brief History of Hackerdom,” Eric S. Raymond, in Open Sources:

Voices from the Open Source Revolution, January 1999, p.6.

http://www.oreilly.com/catalog/opensources/book/raymond.html

7 Ibid.

8 “The Boston Consulting Group Hacker Survey,” Release 0.73, in

cooperation with the Open Source Developer Network, July 24, 2002.

http://www.bcg.com/opensource/

BCGHackerSurveyOSCON24July02v073.pdf

Note that 15 percent checked “other” for current occupation.

Figures do not add to 100 percent due to rounding.

9 Flashmap Systems is a leader in creating intuitive, visual frameworks

for modeling enterprise IT architectures. These frameworks depict a

well-regarded and accepted taxonomy of IT product categories.

http://www.flashmapsystems.com/company.htm

10 DCML “About” page. http://www.dcml.org/aboutDCML.asp

11 OfficeOffice.org is the official name of the application and the project.

12 Dan Tynan, “Hassle-Free E-Mail,” PC World, March 2004 (see chart).

http://www.pcworld.com/reviews/article/0,aid,114149,pg,3,00.asp

13 “The AP Relies on MySQL for Transaction-Heavy News Delivery

System,” June 24, 2003.

http://www.mysql.com/press/user_stories/ap.html

14 Bruce Schneier, Crypto-Gram Newsletter, September 15, 1999.

http://www.schneier.com/

crypto-gram-9909.html#OpenSourceandSecurity

15 Whitfield Diffie, “Risky business: Keeping security a secret,” ZDNet,

January 16, 2003. http://zdnet.com.com/2100-1107-980938.html

16 “Open Source Databases: All Dressed Up, Only So Many Places to Go,”

Aberdeen Group White Paper, March 2004, pp. 7-10.

www.aberdeen.com/ab_abstracts/2004/03/03040006.htm

17 James Maguire, “IBM Developing Open-Source Server Software,”

NewsFactor Network, December 23, 2002.

http://www.newsfactor.com/story.xhtml?story_id=20322

18 “Questions and Answers on Open-Source Licensing,”

Gartner Research Note, October 28, 2002, p.1.

19 “The Open Source Paradigm Shift,” Tim O’Reilly, presentation, June

2003, slide 20. http://tim.oreilly.com/opensource/ParadigmShift.pdf

20 W. Brian Arthur, “Is the Information Revolution Over?”

Business 2.0, March 2002.

21 “Embedded Systems Development Trends: Asia,” EE Times - Asia –

Gartner/DataQuest White Paper, October 2003, pp. 20-21.

22 “From Server Room to Living Room: How open source and TiVo

became a perfect match,” QUEUE, July/August 2003, p.25.

23 “Device Profile: Dreambox DM7000 – An Open TV Hacker’s Paradise,”

LinuxDevices.com, October 2003.

http://linuxdevices.com/articles/AT7482684956.html

24 “Your Open Source Strategy,” Forrester Research, September 2003, p.1.

25 “Free and Open Source Software,” Statskontoret, the Swedish Agency for

Public Management, 2003, p. 4.

26 H.G. Wells, “World Brain: The Idea of a Permanent World

Encyclopaedia,” contribution to the new Encyclopédie Française, August

1937. http://sherlock.berkeley.edu/wells/world_brain.html

27 MIT Open Source Building Alliance prospectus, November 11, 2003, p.1.

http://architecture.mit.edu/house_n/web/projects/

OSBAProspectusNov11-2003.pdf

28 Anna Salleh, “Push to free up biotech tools for all,” ABC Science Online,

December 1, 2003. www.abc.net.au/science/news/stories/s999733.htm

29 “Australian genetics pioneer recognized in global top 50,”

Cambia press release, November 25, 2003. http://www.cambia.org/

downloads/global_top_50.pdf

30 Graeme O’Neill, “Open-source biology stance earns international

honour,” Australian Biotechnology News, March 12, 2003.

http://www.cambia.org/downloads/Biotechnology_News_Dec_03.pdf

31 Public Library of Science home page. http://www.plos.org/index.html

32 “Public Library of Science Wins Wired Magazine Science Rave Award,”

PLoS press release, March 18, 2004.

www.plos.org/news/announce_rave.html

33 “The Architecture rEvolution: Exploring the Network Effect on

Infrastructure, Applications and Business Process,” CSC LEF Report, 2003.

http://www.csc.com/aboutus/lef/mds67_off/index.shtml#reports

34 PlaneShift “About” page. http://www.planeshift.it/about.html

35 PlaneShift License page. http://www.planeshift.it/pslicense.html

36 J.D. Hildebrand, “A Road Less Traveled,” Software Development Times,

January 1, 2001. http://www.sdtimes.com/cols/opensourcewatch_021.htm

37 GNU Lesser General Public License, Preamble.

http://www.opensource.org/licenses/lgpl-license.html

38 Memorandum by John P. Stenbit, CIO, U.S. Department of Defense,

May 28, 2003. http://www.egovos.org/rawmedia_repository/

822a91d2_fc51_4e6e_8120_1c2d4d88fa06?/document.pdf

39 Black Duck Software home page. http://www.blackducksoftware.com/

N OT E S

http://www.cio.com/archive/031503/opensource.html
http://www.schneier.com/crypto-gram-9909.html#OpenSourceandSecurity
http://symposium.gartner.com/story.php.id.3390.s.5.html
http://www.csc.com/aboutus/lef/mds67_off/index.shtml#reports
http://catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/index.html
http://www.oreilly.com/catalog/opensources/book/raymond.html
http://www.bcg.com/opensource/BCGHackerSurveyOSCON24July02v073.pdf
http://www.flashmapsystems.com/company.htm
http://www.dcml.org/aboutDCML.asp
http://www.pcworld.com/reviews/article/0,aid,114149,pg,3,00.asp
http://www.mysql.com/press/user_stories/ap.html
http://zdnet.com.com/2100-1107-980938.html
www.aberdeen.com/ab_abstracts/2004/03/03040006.htm
http://www.newsfactor.com/story.xhtml?story_id=20322
http://tim.oreilly.com/opensource/ParadigmShift.pdf
http://linuxdevices.com/articles/AT7482684956.html
http://sherlock.berkeley.edu/wells/world_brain.html
http://architecture.mit.edu/house_n/web/projects/OSBAProspectusNov11-2003.pdf
http://www.abc.net.au/science/news/stories/s999733.htm
http://www.cambia.org/downloads/global_top_50.pdf
http://www.cambia.org/downloads/Biotechnology_News_Dec_03.pdf
http://www.plos.org/index.html
www.plos.org/news/announce_rave.html
http://www.csc.com/aboutus/lef/mds67_off/index.shtml#reports
http://www.planeshift.it/about.html
http://www.planeshift.it/pslicense.html
http://www.sdtimes.com/cols/opensourcewatch_021.htm
http://www.opensource.org/licenses/lgpl-license.html
http://www.egovos.org/rawmedia_repository/822a91d2_fc51_4e6e_8120_1c2d4d88fa06?/document.pdf
http://www.blackducksoftware.com/

87

AP PENDIX : HANDY WEB S ITES

OpenLDAP

www.openldap.org

Apache Software Foundation

www.apache.org

Open Source Applications Foundation

www.osafoundation.org

JBoss

www.jboss.org

MySQL

www.mysql.com

OpenCms

www.opencms.org

TikiWiki

tikiwiki.org

Covalent Technologies

www.covalent.com

GNOME Foundation

www.gnome.org

OpenOffice

www.openoffice.org

Compiere

www.compiere.org

CULTURE OF COMMUNITY

GNU

www.gnu.org

“The Cathedral and the Bazaar”

(paper by Eric Raymond)

catb.org/~esr/writings/cathedral-bazaar/

cathedral-bazaar/index.html

SourceForge

www.sourceforge.net

GForge

www.gforge.org

MOVING UP THE STACK

Flashmap Systems

www.flashmapsystems.com

BSD

www.bsd.org

Globus

www.globus.org

Sun Microsystems’ Grid Engine

gridengine.sunsource.net

OpenSSL

www.openssl.org

Many Web sites have extensive information on the

topics discussed in this report. Here are a few sites

to get you started.

www.gnu.org
http://catb.org/~esr/writings/cathedral-bazaar/cathedral-bazaar/index.html
www.sourceforge.net
www.gforge.org
www.flashmapsystems.com
www.bsd.org
www.globus.org
gridengine.sunsource.net
www.openssl.org
www.openldap.org
www.apache.org
www.osafoundation.org
www.jboss.org
www.mysql.com
www.opencms.org
http://www.tikiwiki.org
http://www.covalent.com
http://www.gnome.org
http://www.openoffice.org
http://www.compiere.org

88

MISSION CRITICAL

Google

www.google.com

Associated Press

www.ap.org

Mars Science Activity Planner

robotics.jpl.nasa.gov/people/jnorris/SAP-IEEEAS03.pdf

Credit Suisse First Boston

www.csfb.com

Danish Ministry of Finance

www.fm.dk

Deutsche Börse Group

deutsche-boerse.com

Open Source Development Labs

www.osdl.org

SWEET SPOT

Zeus Technology

www.zeus.com/products/zws

“Open Source Databases: All Dressed Up, Only So

Many Places to Go” (Aberdeen Group White Paper)

www.aberdeen.com/ab_abstracts/2004/03/03040006.htm

Metapa

www.metapa.com

Northwest Educational Technology Consortium’s

Open Options

www.netc.org/openoptions/index.html

SOFTWARE REVOLUTION

Expect

expect.nist.gov

H.E.A.T.

www.heatscanner.com

“John the Ripper”

www.openwall.com/john

PasTmon

pastmon.sourceforge.net

OpenCyc

www.opencyc.org

Intalio

www.intalio.com

ExoLab

www.exolab.org

AT YOUR SERVICE

Red Hat

www.redhat.com

Novell

www.novell.com

HP Linux Indemnity Site

h10018.www1.hp.com/wwsolutions/linux/

linuxprotection.html

Zope Community

www.zope.org

Workspot

www.workspot.com

continued from page 87

http://www.google.com
http://www.ap.org
robotics.jpl.nasa.gov/people/jnorris/SAP-IEEEAS03.pdf
www.csfb.com
www.fm.dk
http://www.deutsche-boerse.com
http://www.osdl.org
http://www.zeus.com/products/zws
http://www.aberdeen.com/ab_abstracts/2004/03/03040006.htm
http://www.metapa.com
http://www.netc.org/openoptions/index.html
http://expect.nist.gov/
http://www.heatscanner.com
http://www.openwall.com/john
http://pastmon.sourceforge.net/
http://www.opencyc.org
http://www.intalio.com
http://www.exolab.org
http://www.redhat.com
http://www.novell.com
h10018.www1.hp.com/wwsolutions/linux/linuxprotection.html
http://www.zope.org
http://www.workspot.com

INVISIBLE MAN

Wind River Systems

www.windriver.com

Zultys Technologies

www.zultys.com

TiVo

www.tivo.com

Dream-Multimedia-TV

www.dream-multimedia-tv.de

PhatNoise

www.phatnoise.com

D-Link Systems’ Central Home Drive

www.dlink.com/products/?pid=283

Stargate Project (includes Intel Research

Personal Server)

platformx.sourceforge.net

Land Warrior

www.fas.org/man/dod-101/sys/land/land-warrior.htm

MARKET FORCE

Microsoft Windows Template Library Project

sourceforge.net/projects/wtl

Openadapter

www.openadapter.org

Eclipse

www.eclipse.org

Hibernate

www.hibernate.org

NEW DOMAINS

Wikipedia

www.wikipedia.org

Openlaw

cyber.law.harvard.edu/openlaw

ThinkCycle

www.thinkcycle.org

OpenCores

www.opencores.org

IBM’s Power Architecture

www-1.ibm.com/technology/power

Intel’s Open Source Machine Learning Library

www.intel.com/ca/pressroom/2003/1208.htm

Open Source Building Alliance

architecture.mit.edu/house_n/web/projects/

OSBAProspectusNov11-2003.pdf

Cambia

www.cambia.org

Public Library of Science

www.plos.org

Open Spectrum

www.reed.com/dprframeweb/dprframe.asp

Creative Commons

creativecommons.org

MIT’s OpenCourseWare

ocw.mit.edu/index.html

The Open Source Cookbook: Fuel for Geeks

www.ibiblio.org/oscookbook

89

http://www.windriver.com/
http://www.zultys.com
http://www.tivo.com
http://www.dream-multimedia-tv.de
http://www.phatnoise.com
http://www.dlink.com/products/?pid=283
http://platformx.sourceforge.net/
http://www.fas.org/man/dod-101/sys/land/land-warrior.htm
http://sourceforge.net/projects/wtl
http://www.openadapter.org
http://www.eclipse.org
http://www.hibernate.org
http://www.wikipedia.org
http://cyber.law.harvard.edu/openlaw/
http://www.thinkcycle.org
http://www.opencores.org
www-1.ibm.com/technology/power
www.intel.com/ca/pressroom/2003/1208.htm
architecture.mit.edu/house_n/web/projects/OSBAProspectusNov11-2003.pdf
http://www.cambia.org
http://www.plos.org
http://www.reed.com/dprframeweb/dprframe.asp
http://creativecommons.org
http://ocw.mit.edu/index.html
http://www.ibiblio.org/oscookbook

90

FUN FACTOR

Ogg Vorbis CODEC Project

www.xiph.org/ogg/vorbis

VideoLAN

www.videolan.org

Project Mayo

www.projectmayo.com

PlaneShift

www.planeshift.it

NetHack

www.nethack.org/index.html

id Software

www.idsoftware.com/

Neverwinter Nights

nwn.bioware.com/about/index.html

LEGAL AND BUSINESS ISSUES

Free Software Foundation

www.gnu.org/philosophy/

philosophy.html#AboutFreeSoftware

GPL

www.fsf.org/licenses/gpl.html

More about the GPL

www.gnu.org/licenses/gpl-faq.html

LGPL

www.opensource.org/licenses/lgpl-license.php

Open Source Definition from OSI

opensource.org/docs/definition.php

Sun Community Source License

wwws.sun.com/software/communitysource/j2se/

java2/index.html

“An Overview of ‘Open Source’ Software Licenses”

(report by the Software Licensing Committee

of the American Bar Association’s Intellectual

Property Section)

www.abanet.org/intelprop/opensource.html

Open Source Risk Management

www.osriskmanagement.com

Black Duck Software

www.blackducksoftware.com

continued from page 89

http://www.xiph.org/ogg/vorbis
http://www.videolan.org
http://www.projectmayo.com
http://www.planeshift.it
http://www.nethack.org/index.html
http://www.idsoftware.com/
http://nwn.bioware.com/about/index.html
http://www.gnu.org/philosophy/philosophy.html#AboutFreeSoftware
http://www.fsf.org/licenses/gpl.html
http://www.gnu.org/licenses/gpl-faq.html
http://www.opensource.org/licenses/lgpl-license.php
http://opensource.org/docs/definition.php
http://wwws.sun.com/software/communitysource/j2se/java2/index.html
http://www.abanet.org/intelprop/opensource.html
http://www.osriskmanagement.com
http://www.blackducksoftware.com

Tony Ardouin, CSC

Jason Arnold, CSC

Rolf Barth, Deutsche Börse Group

Joerg Benischke, Deutsche Bank

Dan Benyamin, PhatNoise

Graham Bevan, CSC

Derek Binney, CSC

Anke Bramstedt, CSC

John De Oliveira, Cycorp

Andrew Doble, CSC

Tim Dooley, CSC

Ken Ferguson, Huntsman Corporation

Mark Foley, CSC

Aaron Fuller, CSC

Ismael Ghalimi, Intalio

Bruce Gritton, U.S. Navy

Frank Habraken, CSC

Graeme Hay, CSC

Peter Henningsen,

Danish Ministry of Finance

Hans Jayatissa, CSC

Charles Kramer, Esq.

Jim Mundy, CSC

Jim Petrassi, CSC

Dave Powell, Metapa

Joe Reed, CSC

91

A C K N O W L E D G M E N T S

The report team used a variety of open source software in working on this report. The team leveraged the CSC Toolbox collaborative environment,

which provided a shared drive (using WebDAV based on Apache) and a wiki. The wiki was an ideal platform for sharing research materials globally,

as the contributors were from all over the world. Early in the project, the team created “mind maps” based on FreeMind. As the project progressed,

the team used OpenOffice for giving presentations. Throughout the project, Mozilla Firefox was the team’s browser of choice.

The LEF would like to thank the many others who contributed to the research and review of this report:

LEF Associates Stefan Höhn (far left) and Gabor Herr
conducted the research for this report. Stefan is a lead

architect and team leader of the J2EE and Open Source team,

and Gabor is a solution architect on the team. Both work

in CSC’s e-Business and Technology Center in Wiesbaden,

Germany. The two poured their insights and their heart and

soul into the report, which reflects their passion and business

sensibility around the open source movement. As the

research came to a close, Stefan and Gabor were deep into

their next client engagement, also involving open source.

shoehn2@csc.com, gherr@csc.com

Assisting Stefan and Gabor with significant contributions were

Maja Kreikemeier, research; Tom Knapp, legal and business

issues; and Lisa Braun, writing and editing.

Howard Smith, CSC

Jason Snyder, CSC

Bob Solis, CSC

Juan Carlos Soto, Sun Microsystems

Marc Stern, CSC

Bob Tarling, CSC

Jeff Tash, Flashmap Systems

Michael Tiemann, Red Hat

Paul Tocci, CSC

Michael Uhlig,

Delta Lloyd Deutschland AG

Christian Wernberg-Tougaard, CSC

Rolf Wilms, CSC

mailto:shoehn2@csc.com
mailto:gherr@csc.com

92

LEGO, MINDSTORMS and the LEGO logo are trademarks of The LEGO Group.

Motorola A760 and Motorola E680 are trademarks of Motorola, Inc.

Logos on cover (from right to left):

[Linux Penguin] The Linux Penguin “Tux” was created by Larry Ewing

(lewing@isc.tamu.edu).

[GNU Head] Copyright (C) 1996, 1997, 1998 Free Software

Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA

02111, USA. Verbatim copying and distribution of this

entire article is permitted in any medium, provided this

notice is preserved.

[Apache Feather] Apache is a trademark of The Apache Software

Foundation and is used with permission.

[OpenOffice.org Birds] OpenOffice.org birds are used with permission.

[GNOME Foot] The GNOME Foot Logo on the cover is the property of

the GNOME Foundation, and is used with permission.

mailto:lewing@isc.tamu.edu

LEF09/3cover.qxd 9/3/04 1:18 PM Page 3

Computer Sciences Corporation

Worldwide CSC Headquarters

The Americas
2100 East Grand Avenue
El Segundo, California 90245
United States
+1.310.615.0311

European Group
The Royal Pavilion
Wellesley Road
Aldershot
Hampshire GU11 1PZ
United Kingdom
+44(0)1252.534000

Australia/New Zealand
26 Talavera Road
Macquarie Park NSW 2113
Australia
+61(0)2.9034.3000

Asia
139 Cecil Street
#08-00 Cecil House
Singapore 069539
Republic of Singapore
+65.6221.9095

About CSC
Computer Sciences Corporation helps clients achieve strategic goals and profit from the use of information technology.

With the broadest range of capabilities, CSC offers clients the solutions they need to manage complexity, focus on core businesses,
collaborate with partners and clients, and improve operations.

CSC makes a special point of understanding its clients and provides experts with real-world experience to with work them.
CSC is vendor-independent, delivering solutions that best meet each client’s unique requirements.

For more than 40 years, clients in industries and governments worldwide have trusted CSC with their business process and
information systems outsourcing, systems integration and consulting needs.

The company trades on the New York Stock Exchange under the symbol “CSC.”

© 2004 Computer Sciences Corporation. All rights reserved.
Printed in USA 4M 9/04 AP WH711

LEF09/3cover.qxd 9/3/04 1:18 PM Page 4

http://www.csc.com

	Open Source: Open for Business
	About the Leading Edge Forum
	Contents
	Getting Down to Business
	Treasure Chest: Technology Trends
	Culture of Community
	Moving Up the Stack
	Platforms
	Middleware
	Serverware
	Manageware
	Clientware
	Business Intelligence
	Commercial Off-the-Shelf Applications
	Sidebar: Are You Reinventing the Wheel?
	Sidebar: What's Different About Development?

	Mission Critical
	Sidebar: Security

	Sweet Spot
	Sidebar: Total Cost of Ownership

	Software Revolution
	At Your Service
	Sidebar: Customer Value

	Invisible Man
	Market Force
	New Domains
	Fun Factor

	Legal and Business Issues
	Legal Considerations
	Commercial Considerations
	Policy Considerations
	Sidebar: Major Open Source Licenses

	Getting Started
	Business Strategy View
	Administrative View
	Technical View

	Notes
	Appendix: Handy Web Sites
	Acknowledgements

