Pper—tu-peer is the next great thing for the Internet.”

—Lawrence Lessig, Stanford Law School,
author Code and (ther Laws of Cyberspace

PEER-TO-PEE

Harnessing Power i

b

the Power of
pisruptive Technologies

Edited by Andy Oram

Peer to Peer: Harnessing the Power of
Disruptive Technologies

Andy Oram (editor)

First Edition March 2001
ISBN: 0-596-00110-X, 448 pages

This book presents the goals that drive the developers of the best-known
peer-to-peer systems, the problems they've faced, and the technical
solutions they've found.

The contributors are leading developers of well-known peer-to-peer
systems, such as Gnutella, Freenet, Jabber, Popular Power,
SETI@Home, Red Rover, Publius, Free Haven, Groove Networks, and
Reputation Technologies.

Topics include metadata, performance, trust, resource allocation,
reputation, security, and gateways between systems.

Table of Contents

Preface
Andy Oram
Part I. Context and Overview

1. A Network of Peers: Models Through the History of the Internet
Nelson Minar and Marc Hedlund

2, Listening to Napster
Clay Shirky

3. Remaking the Peer-to-Peer Meme
Tim O'Reilly

4. The Cornucopia of the Commons
Dan Bricklin
Part II. Projects

5. SETI@home
David Anderson

6. Jabber: Conversational Technologies
Jeremie Miller

~. Mixmaster Remailers

Adam Langley
8. Gnutella

Gene Kan
9. Freenet

Adam Langley
10. Red Rover

Alan Brown
11. Publius

Marc Waldman, Lorrie Faith Cranor, and Avi Rubin

12. Free Haven
Roger Dingledine, Michael J. Freedman, and David Molnar

19

29

41

45

51

59

62

80

86

93

102

Table of Contents (cont...)

Part III. Technical Topics

13. Metadata
Rael Dornfest and Dan Brickley

14. Performance
Theodore Hong

15. Trust

Marc Waldman, Lorrie Faith Cranor, and Avi Rubin

16. Accountability

Roger Dingledine, Michael J. Freedman, and David Molnar

17. Reputation
Richard Lethin

18. Security
Jon Udell, Nimisha Asthagiri, and Walter Tuvell

19. Interoperability Through Gateways
Brandon Wiley

Afterword
Andy Oram
Appendices
Appendix A: Directory of Peer-to-Peer Projects
Appendix B: Contributors

Interview with Andy Oram

121

128

153

171

214

222

239

247

250

253

256

Description

The term "peer-to-peer" has come to be applied to networks that expect end users to contribute their
own files, computing time, or other resources to some shared project. Even more interesting than the
systems' technical underpinnings are their socially disruptive potential: in various ways they return
content, choice, and control to ordinary users.

While this book is mostly about the technical promise of peer-to-peer, we also talk about its exciting
social promise. Communities have been forming on the Internet for a long time, but they have been
limited by the flat interactive qualities of email and Network newsgroups. People can exchange
recommendations and ideas over these media, but have great difficulty commenting on each other's
postings, structuring information, performing searches, or creating summaries. If tools provided ways
to organize information intelligently, and if each person could serve up his or her own data and
retrieve others' data, the possibilities for collaboration would take off. Peer-to-peer technologies along
with metadata could enhance almost any group of people who share an interest--technical, cultural,
political, medical, you name it.

This book presents the goals that drive the developers of the best-known peer-to-peer systems, the
problems they've faced, and the technical solutions they've found. Learn here the essentials of peer-to-
peer from leaders of the field:

¢ Nelson Minar and Marc Hedlund of Popular Power, on a history of peer-to-peer

¢ Clay Shirky of acceleratorgroup, on where peer-to-peer is likely to be headed

¢ Tim O'Reilly of O'Reilly & Associates, on redefining the public's perceptions

e Dan Bricklin, cocreator of Visicalc, on harvesting information from end-users

¢ David Anderson of SETI@home, on how SETI@Home created the world's largest
computer

¢ Jeremie Miller of Jabber, on the Internet as a collection of conversations

¢ Gene Kan of Gnutella and GoneSilent.com, on lessons from Gnutella for peer-to-peer
technologies

¢ Adam Langley of Freenet, on Freenet's present and upcoming architecture
¢ Alan Brown of Red Rover, on a deliberately low-tech content distribution system

¢ Marc Waldman, Lorrie Cranor, and Avi Rubin of AT&T Labs, on the Publius project
and trust in distributed systems

¢ Roger Dingledine, Michael J. Freedman, and David Molnar of Free Haven, on
resource allocation and accountability in distributed systems

¢ Rael Dornfest of O'Reilly Network and Dan Brickley of ILRT/RDF Web, on metadata
¢ Theodore Hong of Freenet, on performance
¢ Richard Lethin of Reputation Technologies, on how reputation can be built online

e Jon Udell of BYTE and Nimisha Asthagiri and Walter Tuvell of Groove Networks,
on security

¢ Brandon Wiley of Freenet, on gateways between peer-to-peer systems

You'll find information on the latest and greatest systems as well as upcoming efforts in this book.

Peer to Peer: Harnessing the Power of Disruptive Technologies

Preface

Andy Oram, O'Reilly & Associates, Inc.

The term peer-to-peer rudely shoved its way to front and center stage of the computing field around
the middle of the year 2000. Just as the early 20th-century advocates of psychoanalysis saw sex
everywhere, industry analysts and marketing managers are starting to call everything they like in
computers and telecommunications "peer-to-peer." At the same time, technologists report that fear
and mistrust still hang around this concept, sometimes making it hard for them to get a fair hearing
from venture capitalists and policy makers.

Yes, a new energy is erupting in the computing field, and a new cuisine is brewing. Leaving sexiness
aside, this preface tries to show that the term peer-to-peer is a useful way to understand a number of
current trends that are exemplified by projects and research in this book. Seemingly small
technological innovations in peer-to-peer can radically alter the day-to-day use of computer systems,
as well as the way ordinary people interact using computer systems.

But to really understand what makes peer-to-peer tick, where it is viable, and what it can do for you,
you have to proceed to the later chapters of the book. Each is written by technology leaders who are
working 'round the clock to create the new technologies that form the subject of this book. By
following their thoughts and research, you can learn the state of the field today and where it might go
in the future.

Some context and a definition

I mentioned at the beginning of this preface that the idea of peer-to-peer was the new eyebrow-raiser
for the summer of 2000. At that point in history, it looked like the Internet had fallen into predictable
patterns. Retail outlets had turned the Web into the newest mail order channel, while entertainment
firms used it to rally fans of pop culture. Portals and search engines presented a small slice of Internet
offerings in the desperate struggle to win eyes for banner ads. The average user, stuck behind a
firewall at work or burdened with usage restrictions on a home connection, settled down to sending
email and passive viewing.

In a word, boredom. Nothing much for creative souls to look forward to. An Olympic sports ceremony
that would go on forever.

At that moment the computer field was awakened by a number of shocks. The technologies were not
precisely new, but people realized for the first time that they were having a wide social impact:

Napster

This famous and immensely popular music exchange system caused quite a ruckus, first over
its demands on campus bandwidth, and later for its famous legal problems. The technology is
similar to earlier systems that got less attention, and even today is rather limited (since it was
designed for pop songs, though similar systems have been developed for other types of data).
But Napster had a revolutionary impact because of a basic design choice: after the initial
search for material, clients connect to each other and exchange data directly from one
system's disk to the other.

SETI@home

This project attracted the fascination of millions of people long before the Napster
phenomenon, and it brought to public attention the promising technique of distributing a
computation across numerous personal computers. This technique, which exploited the
enormous amounts of idle time going to waste on PCs, had been used before in projects to
crack encryption challenges, but after SETI@home began, a number of companies started up
with the goal of making the technique commercially viable.

Freenet

Several years before the peer-to-peer mania, University of Edinburgh researcher Ian Clarke
started to create an elegantly simple and symmetric file exchange system that has proven to be
among the purest of current models for peer-to-peer systems. Client and server are the same
thing in this system; there is absolutely no centralization.

page 1

Peer to Peer: Harnessing the Power of Disruptive Technologies

Gnutella

This experimental system almost disappeared before being discovered and championed by
open source developers. It is another file exchange system that, like Freenet, stresses
decentralization. Its potential for enhanced searches is currently being explored.

Jabber
This open source project combines instant messaging (supporting many popular systems)
with XML. The emergence of Jabber proclaimed that XML was more than a tool for business-
to-business (B2B) transaction processing, and in fact could be used to create spontaneous
communities of ordinary users by structuring the information of interest to them.

.NET

This is the most far-reaching initiative Microsoft has released for many years, and they've
announced that they're betting the house on it. NET makes Microsoft's earlier component
technology easier to use and brings it to more places, so that web servers and even web
browsers can divide jobs among themselves. XML and SOAP (a protocol for doing object-
oriented programming over the Web) are a part of NET.

Analysts trying to find the source of inspiration for these developments have also noted a new world of
sporadically connected Internet nodes emerging in laptops, handhelds, and cell phones, with more
such nodes promised for the future in the form of household devices.

What thread winds itself around all these developments? In various ways they return content, choice,
and control to ordinary users. Tiny endpoints on the Internet, sometimes without even knowing each
other, exchange information and form communities. There are no more clients and servers - or at
least, the servers retract themselves discreetly. Instead, the significant communication takes place
between cooperating peers. That is why, diverse as these developments are, it is appropriate to lump
them together under the rubric peer-to-peer.

While the technologies just listed are so new we cannot yet tell where their impact will be, peer-to-
peer is also the oldest architecture in the world of communications. Telephones are peer-to-peer, as is
the original UUCP implementation of Usenet. IP routing, the basis of the Internet, is peer-to-peer,
even now when the largest access points raise themselves above the rest. Endpoints have also
historically been peers, because until the past decade every Internet- connected system hosted both
servers and clients. Aside from dial-up users, the second-class status of today's PC browser crowd
didn't exist. Thus, as some of the authors in this book point out, peer-to-peer technologies return the
Internet to its original vision, in which everyone creates as well as consumes.

Many early peer-to-peer projects have an overtly political mission: routing around censorship. Peer-
to-peer techniques developed in deliberate evasion of mainstream networking turned out to be very
useful within mainstream networking. There is nothing surprising about this move from a specialized
and somewhat ostracized group of experimenters to the center of commercial activity; similar trends
can be found in the history of many technologies. After all, organizations that are used to working
within the dominant paradigm don't normally try to change that paradigm; change is more likely to
come from those pushing a new cause. Many of the anti-censorship projects and their leaders are
featured in this book, because they have worked for a long time on the relevant peer-to-peer issues
and have a lot of experience to offer.

Peer-to-peer can be seen as the continuation of a theme that has always characterized Internet
evolution: loosening the virtual from the physical. DNS decoupled names from physical systems, while
URNSs were meant to let users retrieve documents without knowing the domain names of their hosts.
Virtual hosting and replicated servers changed the one-to-one relationship of names to systems.
Perhaps it is time for another major conceptual leap, where we let go of the notion of location.
Welcome to the Heisenberg Principle as applied to the Internet.

page 2

Peer to Peer: Harnessing the Power of Disruptive Technologies

The two-way Internet also has a social impact, and while this book is mostly about the technical
promise of peer-to-peer, authors also talk about its exciting social promise. Communities have been
forming on the Internet for a long time, but they have been limited by the flat interactive qualities of
email and network newsgroups. People can exchange recommendations and ideas over these media,
but they have great difficulty commenting on each other's postings, structuring information,
performing searches, or creating summaries. If tools provided ways to organize information
intelligently, and if each person could serve up his or her own data and retrieve others' data, the
possibilities for collaboration would take off. Peer-to-peer technologies could enhance almost any
group of people who share an interest - technical, cultural, political, medical, you name it.

How this book came into being

The feat of compiling original material from the wide range of experts who contributed to this book is
a story all in itself.

Long before the buzz about peer-to-peer erupted in the summer of 2000, several people at O'Reilly &
Associates had been talking to leaders of interesting technologies who later found themselves
identified as part of the peer-to-peer movement. At that time, for instance, we were finishing a book
on SETI@home (Beyond Contact, by Brian McConnell) and just starting a book on Jabber. Tim
O'Reilly knew Ray Ozzie of Groove Networks (the creator of Lotus Notes), Marc Hedlund and Nelson
Minar of Popular Power, and a number of other technologists working on technologies like those in
this book.

As for me, I became aware of the technologies through my interest in Internet and computing policy.
When the first alarmist news reports were published about Freenet and Gnutella, calling them
mechanisms for evading copyright controls and censorship, I figured that anything with enough power
to frighten major forces must be based on interesting and useful technologies. My hunch was borne
out more readily than I could have imagined; the articles I published in defense of the technologies
proved to be very popular, and Tim O'Reilly asked me to edit a book on the topic.

As a result, contributors came from many sources. Some were already known to O'Reilly & Associates,
some were found through a grapevine of interested technologists, and some approached us when word
got out that we were writing about peer-to-peer. We solicited chapters from several people who could
have made valuable contributions but had to decline for lack of time or other reasons. I am fully
willing to admit we missed some valuable contributors simply because we did not know about them,
but perhaps that can be rectified in a future edition.

In addition to choosing authors, I spent a lot of effort making sure their topics accurately represented
the field. I asked each author to find a topic that he or she found compelling, and I weighed each topic
to make sure it was general enough to be of interest to a wide range of readers.

I was partial to topics that answered the immediate questions knowledgeable computer people ask
when they hear about peer-to-peer, such as "Will performance become terrible as it scales?" or "How
can you trust people?" Naturally, I admonished authors to be completely honest and to cover
weaknesses as well as strengths.

We did our best, in the short time we had, to cover everything of importance while avoiding overlap.
Some valuable topics could not be covered. For instance, no one among the authors we found felt
comfortable writing about search techniques, which are clearly important to making peer-to-peer
systems useful. I believe the reason we didn't get to search techniques is that it represents a relatively
high level of system design and system use - a level the field has not yet achieved. Experiments are
being conducted (such as InfraSearch, a system built on Gnutella), but the requisite body of
knowledge is not in place for a chapter in this book. All the topics in the following pages - trust,
accountability, metadata - have to be in place before searching is viable. Sometime in the future, when
the problems in these areas are ironed out, we will be ready to discuss search techniques.

Thanks to Steve Burbeck, Ian Clarke, Scott Miller, and Terry Steichen, whose technical reviews were
critical to assuring accurate information and sharpening the arguments in this book. Thanks also to
the many authors who generously and gently reviewed each other's work, and to those people whose
aid is listed in particular chapters.

page 3

Peer to Peer: Harnessing the Power of Disruptive Technologies

Thanks also to the following O'Reilly staff: Darren Kelly, production editor; Leanne Soylemez, who
was the copyeditor; Rachel Wheeler, who was the proofreader; Matthew Hutchinson, Jane Ellin,
Sarah Jane Shangraw, and Claire Cloutier, who provided quality control; Judy Hoer, who wrote the
index; Lucy Muellner and Linley Dolby, who did interior composition; Edie Freedman, who designed
the cover of this book; Emma Colby, who produced the cover layout; Melanie Wang and David Futato,
who designed the interior layout; Mike Sierra, who implemented the design; and Robert Romano and
Jessamyn Reed, who produced the illustrations.

Contents of this book

It's fun to find a common thread in a variety of projects, but simply noting philosophical parallels is
not enough to make the term peer-to-peer useful. Rather, it is valuable only if it helps us develop and
deploy the various technologies. In other words, if putting two technologies under the peer-to-peer
umbrella shows that they share a set of problems, and that the solution found for one technology can
perhaps be applied to another, we benefit from the buzzword. This book, then, spends most of its time
on general topics rather than the details of particular existing projects.

Part I contains the observations of several thinkers in the computer industry about the movements
that have come to be called peer-to-peer. These authors discuss what can be included in the term,
where it is innovative or not so innovative, and where its future may lie.

Chapter 1 - describes where peer-to-peer systems might offer benefits, and the problems of fitting such
systems into the current Internet. It includes a history of early antecedents. The chapter is written by
Nelson Minar and Marc Hedlund, the chief officers of Popular Power.

Chapter 2 - tries to tie down what peer-to-peer means and what we can learn from the factors that
made Napster so popular. The chapter is written by investment advisor and essayist Clay Shirky.

Chapter 3 - contrasts the way the public often views a buzzword such as peer-to-peer with more
constructive approaches. It is written by Tim O'Reilly, founder and CEO of O'Reilly & Associates, Inc.

Chapter 4 - reveals the importance of maximizing the value that normal, selfish use adds to a service.
It is written by Dan Bricklin, cocreator of Visicalc, the first computer spreadsheet.

Some aspects of peer-to-peer can be understood only by looking at real systems. Part II contains
chapters of varying length about some important systems that are currently in operation or under
development.

Chapter 5 - presents one of the most famous of the early crop of peer-to-peer technologies. Project
Director David Anderson explains why the team chose to crunch astronomical data on millions of
scattered systems and how they pulled it off.

Chapter 6 - presents the wonderful possibilities inherent in using the Internet to form communities of
people as well as automated agents contacting each other freely. It is written by Jeremie Miller, leader
of the Jabber project.

Chapter 7 - covers a classic system for allowing anonymous email. Other systems described in this
book depend on Mixmaster to protect end-user privacy, and it represents an important and long-
standing example of peer-to-peer in itself. It is written by Adam Langley, a Freenet developer.

Chapter 8 - offers not only an introduction to one of the most important of current projects, but also
an entertaining discussion of the value of using peer-to-peer techniques. The chapter is written by
Gene Kan, one of the developers most strongly associated with Gnutella.

Chapter 9 - describes an important project that should be examined by anyone interested in peer-to-
peer. The chapter explains how the system passes around requests and how various cryptographic
keys permit searches and the retrieval of documents. It is written by Adam Langley.

Chapter 10 - describes a fascinating system for avoiding censorship and recrimination for the
distribution of files using electronic mail. It is written by Alan Brown, the developer of Red Rover.

page 4

Peer to Peer: Harnessing the Power of Disruptive Technologies

Chapter 11 - describes a system that distributes material through a collection of servers in order to
prevent censorship. Although Publius is not a pure peer-to-peer system, its design offers insight and
unique solutions to many of the problems faced by peer-to-peer designers and users. The chapter is
written by Marc Waldman, Lorrie Faith Cranor, and Avi Rubin, the members of the Publius team.

Chapter 12 - introduces another set of distributed storage services that promotes anonymity with the
addition of some new techniques in improving accountability in the face of this anonymity. It is
written by Roger Dingledine, Michael Freedman, and David Molnar, leaders of the Free Haven team.

In Part III, project leaders choose various key topics and explore the problems, purposes, and
promises of the technology.

Chapter 13 - shows how to turn raw data into useful information and how that information can
support information seekers and communities. Metadata can be created through XML, RDF, and
other standard formats. The chapter is written by Rael Dornfest, an O'Reilly Network developer, and
Dan Brickley, a longstanding RDF advocate and chair of the World Wide Web Consortium's RDF
Interest Group.

Chapter 14 - covers a topic that has been much in the news recently and comes to mind immediately
when people consider peer-to-peer for real-life systems. This chapter examines how well a peer-to-
peer project can scale, using simulation to provide projections for Freenet and Gnutella. It is written
by Theodore Hong of the Freenet project.

Chapter 15 - begins a series of chapters on the intertwined issues of privacy, authentication,
anonymity, and reliability. This chapter covers the basic elements of security, some of which will be
well known to most readers, but some of which are fairly novel. It is written by the members of the
Publius team.

Chapter 16 - covers ways to avoid the "tragedy of the commons" in shared systems - in other words,
the temptation for many users to freeload off the resources contributed by a few. This problem is
endemic to many peer-to-peer systems, and has led to several suggestions for micropayment systems
(like Mojo Nation) and reputation systems. The chapter is written by leaders of the Free Haven team.

Chapter 17 - discusses ways to automate the collection and processing of information from previous
transactions to help users decide whether they can trust a server with a new transaction. The chapter
is written by Richard Lethin, founder of Reputation Technologies, Inc.

Chapter 18 - offers the assurance that it is technically possible for people in a peer-to-peer system to
authenticate each other and ensure the integrity and secrecy of their communications. The chapter
accomplishes this by describing the industrial-strength security system used in Groove, a new
commercial groupware system for small collections of people. It is written by Jon Udell, an
independent author/consultant, and Nimisha Asthagiri and Walter Tuvell, staff of Groove Networks.

Chapter 19 - discusses how the best of all worlds could be achieved by connecting one system to
another. It includes an encapsulated comparison of several peer-to-peer systems and the advantages
each one offers. It is written by Brandon Wiley, a developer of the Freenet project.

Appendix A - lists some interesting projects, companies, and standards that could reasonably be
considered examples of peer-to-peer technology.

Peer-to-peer web site

O'Reilly has created the web site http://openp2p.com/ to cover peer-to-peer (P2P) technology for
developers and technical managers. The site covers these technologies from inside the communities
producing them and tries to profile the leading technologists, thinkers, and programmers in the P2P
space by providing a deep technical perspective.

pages

http://openp2p.com/

Peer to Peer: Harnessing the Power of Disruptive Technologies

We'd like to hear from you

Please address comments and questions concerning this book to the publisher:

0'Reilly & Associates, Inc.

101 Morris Street Sebastopol, CA 95472

(800) 998-9938 (in the united States or Canada)
(707) 829-0515 (international or Tocal)

(707) 829-0104 (fax)

We have a web page for this book, where we list errata, examples, or any additional information. You
can access this page at:

http://www.oreilly.com/catalog/peertopeer
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, conferences, software, Resource Centers, and the O'Reilly
Network, see our web site at:

http://www.oreilly.com/

page 6

http://www.oreilly.com/catalog/peertopeer
http://www.oreilly.com/

Peer to Peer: Harnessing the Power of Disruptive Technologies

Part I: Context and Overview

This part of the book offers some high-level views, defining the term "peer-to-peer"
and placing current projects in a social and technological context.

page 7

Peer to Peer: Harnessing the Power of Disruptive Technologies

Chapter 1. A Network of Peers: Peer-to-Peer
Models Through the History of the Internet

Nelson Minar and Marc Hedlund, Popular Power

The Internet is a shared resource, a cooperative network built out of millions of hosts all over the
world. Today there are more applications than ever that want to use the network, consume bandwidth,
and send packets far and wide. Since 1994, the general public has been racing to join the community
of computers on the Internet, placing strain on the most basic of resources: network bandwidth. And
the increasing reliance on the Internet for critical applications has brought with it new security
requirements, resulting in firewalls that strongly partition the Net into pieces. Through rain and snow
and congested Network Access Providers (NAPs), the email goes through, and the system has scaled
vastly beyond its original design.

In the year 2000, though, something has changed - or, perhaps, reverted. The network model that
survived the enormous growth of the previous five years has been turned on its head. What was down
has become up; what was passive is now active. Through the music-sharing application called Napster,
and the larger movement dubbed "peer-to-peer," the millions of users connecting to the Internet have
started using their ever more powerful home computers for more than just browsing the Web and
trading email. Instead, machines in the home and on the desktop are connecting to each other
directly, forming groups and collaborating to become user-created search engines, virtual
supercomputers, and filesystems.

Not everyone thinks this is such a great idea. Some objections (dealt with elsewhere in this volume)
cite legal or moral concerns. Other problems are technical. Many network providers, having set up
their systems with the idea that users would spend most of their time downloading data from central
servers, have economic objections to peer-to-peer models. Some have begun to cut off access to peer-
to-peer services on the basis that they violate user agreements and consume too much bandwidth (for
illicit purposes, at that). As reported by the online News.com site, a third of U.S. colleges surveyed
have banned Napster because students using it have sometimes saturated campus networks.

In our own company, Popular Power, we have encountered many of these problems as we create a
peer-to-peer distributed computing resource out of millions of computers all over the Internet. We
have identified many specific problems where the Internet architecture has been strained; we have
also found work-arounds for many of these problems and have come to understand what true
solutions would be like. Surprisingly, we often find ourselves looking back to the Internet of 10 or 15
years ago to consider how best to solve a problem.

The original Internet was fundamentally designed as a peer-to-peer system. Over time it has become
increasingly client/server, with millions of consumer clients communicating with a relatively
privileged set of servers. The current crop of peer-to-peer applications is using the Internet much as it
was originally designed: as a medium for communication for machines that share resources with each
other as equals. Because this network model is more revolutionary for its scale and its particular
implementations than for its concept, a good number of past Internet applications can provide lessons
to architects of new peer-to-peer applications. In some cases, designers of current applications can
learn from distributed Internet systems like Usenet and the Domain Name System (DNS); in others,
the changes that the Internet has undergone during its commercialization may need to be reversed or
modified to accommodate new peer-to-peer applications. In either case, the lessons these systems
provide are instructive, and may help us, as application designers, avoid causing the death of the
Internet.

(11 The authors wish to thank Debbie Pfeifer for invaluable help in editing this chapter.

page 8

Peer to Peer: Harnessing the Power of Disruptive Technologies

1.1 A revisionist history of peer-to-peer (1969-1995)

The Internet as originally conceived in the late 1960s was a peer-to-peer system. The goal of the
original ARPANET was to share computing resources around the U.S. The challenge for this effort was
to integrate different kinds of existing networks as well as future technologies with one common
network architecture that would allow every host to be an equal player. The first few hosts on the
ARPANET - UCLA, SRI, UCSB, and the University of Utah - were already independent computing
sites with equal status. The ARPANET connected them together not in a master/slave or client/server
relationship, but rather as equal computing peers.

The early Internet was also much more open and free than today's network. Firewalls were unknown
until the late 1980s. Generally, any two machines on the Internet could send packets to each other.
The Net was the playground of cooperative researchers who generally did not need protection from
each other. The protocols and systems were obscure and specialized enough that security break-ins
were rare and generally harmless. As we shall see later, the modern Internet is much more
partitioned.

The early "killer apps" of the Internet, FTP and Telnet, were themselves client/server applications. A
Telnet client logged into a compute server, and an FTP client sent and received files from a file server.
But while a single application was client/server, the usage patterns as a whole were symmetric. Every
host on the Net could FTP or Telnet to any other host, and in the early days of minicomputers and
mainframes, the servers usually acted as clients as well.

This fundamental symmetry is what made the Internet so radical. In turn, it enabled a variety of more
complex systems such as Usenet and DNS that used peer-to-peer communication patterns in an
interesting fashion. In subsequent years, the Internet has become more and more restricted to
client/server-type applications. But as peer-to-peer applications become common again, we believe
the Internet must revert to its initial design.

Let's look at two long-established fixtures of computer networking that include important peer-to-
peer components: Usenet and DNS.

1.1.1 Usenet

Usenet news implements a decentralized model of control that in some ways is the grandfather of
today's new peer-to-peer applications such as Gnutella and Freenet. Fundamentally, Usenet is a
system that, using no central control, copies files between computers. Since Usenet has been around
since 1979, it offers a number of lessons and is worth considering for contemporary file-sharing
applications.

The Usenet system was originally based on a facility called the Unix-to-Unix-copy protocol, or UUCP.
UUCP was a mechanism by which one Unix machine would automatically dial another, exchange files
with it, and disconnect. This mechanism allowed Unix sites to exchange email, files, system patches,
or other messages. The Usenet used UUCP to exchange messages within a set of topics, so that
students at the University of North Carolina and Duke University could each "post" messages to a
topic, read messages from others on the same topic, and trade messages between the two schools. The
Usenet grew from these original two hosts to hundreds of thousands of sites. As the network grew, so
did the number and structure of the topics in which a message could be posted. Usenet today uses a
TCP/IP-based protocol known as the Network News Transport Protocol (NNTP), which allows two
machines on the Usenet network to discover new newsgroups efficiently and exchange new messages
in each group.

The basic model of Usenet provides a great deal of local control and relatively simple administration.
A Usenet site joins the rest of the world by setting up a news exchange connection with at least one
other news server on the Usenet network. Today, exchange is typically provided by a company's ISP.
The administrator tells the company's news server to get in touch with the ISP's news server and
exchange messages on a regular schedule. Company employees contact the company's local news
server, and transact with it to read and post news messages. When a user in the company posts a new
message in a newsgroup, the next time the company news server contacts the ISP's server it will notify
the ISP's server that it has a new article and then transmit that article. At the same time, the ISP's
server sends its new articles to the company's server.

page 9

Peer to Peer: Harnessing the Power of Disruptive Technologies

Today, the volume of Usenet traffic is enormous, and not every server will want to carry the full
complement of newsgroups or messages. The company administrator can control the size of the news
installation by specifying which newsgroups the server will carry. In addition, the administrator can
specify an expiration time by group or hierarchy, so that articles in a newsgroup will be retained for
that time period but no longer. These controls allow each organization to voluntarily join the network
on its own terms. Many organizations decide not to carry newsgroups that transmit sexually oriented
or illegal material. This is a distinct difference from, say, Freenet, which (as a design choice) does not
let a user know what material he or she has received.

Usenet has evolved some of the best examples of decentralized control structures on the Net. There is
no central authority that controls the news system. The addition of new newsgroups to the main topic
hierarchy is controlled by a rigorous democratic process, using the Usenet group news.admin to
propose and discuss the creation of new groups. After a new group is proposed and discussed for a set
period of time, anyone with an email address may submit an email vote for or against the proposal. If
a newsgroup vote passes, a new group message is sent and propagated through the Usenet network.

There is even an institutionalized form of anarchy, the alt.* hierarchy, that subverts the news.admin
process in a codified way. An alt newsgroup can be added at any time by anybody, but sites that don't
want to deal with the resulting absurdity can avoid the whole hierarchy. The beauty of Usenet is that
each of the participating hosts can set their own local policies, but the network as a whole functions
through the cooperation and good will of the community. Many of the peer-to-peer systems currently
emerging have not yet effectively addressed decentralized control as a goal. Others, such as Freenet,
deliberately avoid giving local administrators control over the content of their machines because this
control would weaken the political aims of the system. In each case, the interesting question is: how
much control can or should the local administrator have?

NNTP as a protocol contains a number of optimizations that modern peer-to-peer systems would do
well to copy. For instance, news messages maintain a "Path" header that traces their transmission
from one news server to another. If news server A receives a request from server B, and A's copy of a
message lists B in the Path header, A will not try to retransmit that message to B. Since the purpose of
NNTP transmission is to make sure every news server on Usenet can receive an article (if it wants to),
the Path header avoids a flood of repeated messages. Gnutella, as an example, does not use a similar
system when transmitting search requests, so as a result a single Gnutella node can receive the same
request repeatedly.

The open, decentralized nature of Usenet can be harmful as well as beneficial. Usenet has been
enormously successful as a system in the sense that it has survived since 1979 and continues to be
home to thriving communities of experts. It has swelled far beyond its modest beginnings. But in
many ways the trusting, decentralized nature of the protocol has reduced its utility and made it an
extremely noisy communication channel. Particularly, as we will discuss later, Usenet fell victim to
spam early in the rise of the commercial Internet. Still, Usenet's systems for decentralized control, its
methods of avoiding a network flood, and other characteristics make it an excellent object lesson for
designers of peer-to- peer systems.

1.1.2 DNS

The Domain Name System (DNS) is an example of a system that blends peer-to-peer networking with
a hierarchical model of information ownership. The remarkable thing about DNS is how well it has
scaled, from the few thousand hosts it was originally designed to support in 1983 to the hundreds of
millions of hosts currently on the Internet. The lessons from DNS are directly applicable to
contemporary peer-to-peer data sharing applications.

DNS was established as a solution to a file-sharing problem. In the early days of the Internet, the way
to map a human-friendly name like bbn to an IP address like 4.2.49.2 was through a single flat file,
hosts.txt, which was copied around the Internet periodically. As the Net grew to thousands of hosts
and managing that file became impossible, DNS was developed as a way to distribute the data sharing
across the peer-to-peer Internet.

page 10

Peer to Peer: Harnessing the Power of Disruptive Technologies

The namespace of DNS names is naturally hierarchical. For example, O'Reilly & Associates, Inc. owns
the namespace oreilly.com: they are the sole authority for all names in their domain, such as
http://www.oreilly.com/. This built-in hierarchy yields a simple, natural way to delegate
responsibility for serving part of the DNS database. Each domain has an authority, the name server of
record for hosts in that domain. When a host on the Internet wants to know the address of a given
name, it queries its nearest name server to ask for the address. If that server does not know the name,
it delegates the query to the authority for that namespace. That query, in turn, may be delegated to a
higher authority, all the way up to the root name servers for the Internet as a whole. As the answer
propagates back down to the requestor, the result is cached along the way to the name servers so the
next fetch can be more efficient. Name servers operate both as clients and as servers.

DNS as a whole works amazingly well, having scaled to 10,000 times its original size. There are several
key design elements in DNS that are replicated in many distributed systems today. One element is that
hosts can operate both as clients and as servers, propagating requests when need be. These hosts help
make the network scale well by caching replies. The second element is a natural method of
propagating data requests across the network. Any DNS server can query any other, but in normal
operation there is a standard path up the chain of authority. The load is naturally distributed across
the DNS network, so that any individual name server needs to serve only the needs of its clients and
the namespace it individually manages.

So from its earliest stages, the Internet was built out of peer-to-peer communication patterns. One
advantage of this history is that we have experience to draw from in how to design new peer-to-peer
systems. The problems faced today by new peer-to-peer applications systems such as file sharing are
quite similar to the problems that Usenet and DNS addressed 10 or 15 years ago.

1.2 The network model of the Internet explosion (1995-1999)

The explosion of the Internet in 1994 radically changed the shape of the Internet, turning it from a
quiet geek utopia into a bustling mass medium. Millions of new people flocked to the Net. This wave
represented a new kind of people - ordinary folks who were interested in the Internet as a way to send
email, view web pages, and buy things, not computer scientists interested in the details of complex
computer networks. The change of the Internet to a mass cultural phenomenon has had a far-reaching
impact on the network architecture, an impact that directly affects our ability to create peer-to-peer
applications in today's Internet. These changes are seen in the way we use the network, the breakdown
of cooperation on the Net, the increasing deployment of firewalls on the Net, and the growth of
asymmetric network links such as ADSL and cable modems.

1.2.1 The switch to client/server

The network model of user applications - not just their consumption of bandwidth, but also their
methods of addressing and communicating with other machines - changed significantly with the rise
of the commercial Internet and the advent of millions of home users in the 1990s. Modem connection
protocols such as SLIP and PPP became more common, typical applications targeted slow-speed
analog modems, and corporations began to manage their networks with firewalls and Network
Address Translation (NAT). Many of these changes were built around the usage patterns common at
the time, most of which involved downloading data, not publishing or uploading information.

The web browser, and many of the other applications that sprung up during the early
commercialization of the Internet, were based around a simple client/server protocol: the client
initiates a connection to a well-known server, downloads some data, and disconnects. When the user
is finished with the data retrieved, the process is repeated. The model is simple and straightforward. It
works for everything from browsing the Web to watching streaming video, and developers cram
shopping carts, stock transactions, interactive games, and a host of other things into it. The machine
running a web client doesn't need to have a permanent or well-known address. It doesn't need a
continuous connection to the Internet. It doesn't need to accommodate multiple users. It just needs to
know how to ask a question and listen for a response.

page 11

http://www.oreilly.com/

Peer to Peer: Harnessing the Power of Disruptive Technologies

Not all of the applications used at home fit this model. Email, for instance, requires much more two-
way communication between an email client and server. In these cases, though, the client is often
talking to a server on the local network (either the ISP's mail server or a corporate one). Chat systems
that achieved widespread usage, such as AOL's Instant Messenger, have similar "local" properties, and
Usenet systems do as well. As a result, the typical ISP configuration instructions give detailed (and
often misunderstood) instructions for email, news, and sometimes chat. These were the exceptions
that were worth some manual configuration on the user's part. The "download" model is simpler and
works without much configuration; the "two-way" model is used less frequently but perhaps to greater
effect.

While early visions of the Web always called it a great equalizer of communications - a system that
allowed every user to publish their viewpoints rather than simply consume media - the commercial
explosion on the Internet quickly fit the majority of traffic into the downstream paradigm already used
by television and newspapers. Architects of the systems that enabled the commercial expansion of the
Net often took this model into account, assuming that it was here to stay. Peer-to-peer applications
may require these systems to change.

1.2.2 The breakdown of cooperation

The early Internet was designed on principles of cooperation and good engineering. Everyone working
on Internet design had the same goal: build a reliable, efficient, powerful network. As the Internet
entered its current commercial phase, the incentive structures changed, resulting in a series of stresses
that have highlighted the Internet's susceptibility to the tragedy of the commons. This phenomenon
has shown itself in many ways, particularly the rise of spam on the Internet and the challenges of
building efficient network protocols that correctly manage the common resource.

1.2.2.1 Spam: Uncooperative people

Spam, or unsolicited commercial messages, is now an everyday occurrence on the Internet. Back in
the pre-commercial network, however, unsolicited advertisements were met with surprise and
outrage. The end of innocence occurred on April 12, 1994, the day the infamous Canter and Seigel
"green card spam" appeared on the Usenet. Their offense was an advertisement posted individually to
every Usenet newsgroup, blanketing the whole world with a message advertising their services. At the
time, this kind of action was unprecedented and engendered strong disapproval. Not only were most
of the audience uninterested in the service, but many people felt that Canter and Seigel had stolen the
Usenet's resources. The advertisers did not pay for the transmission of the advertisement; instead the
costs were borne by the Usenet as a whole.

In the contemporary Internet, spam does not seem surprising; Usenet has largely been given over to
it, and ISPs now provide spam filtering services for their users' email both to help their users and in
self-defense. Email and Usenet relied on individuals' cooperation to not flood the commons with junk
mail, and that cooperation broke down. Today the Internet generally lacks effective technology to
prevent spam.

The problem is the lack of accountability in the Internet architecture. Because any host can connect to
any other host, and because connections are nearly anonymous, people can insert spam into the
network at any point. There has been an arms race of trying to hold people accountable - closing down
open sendmail relays, tracking sources of spam on Usenet, retaliation against spammers - but the
battle has been lost, and today we have all learned to live with spam.

The lesson for peer-to-peer designers is that without accountability in a network, it is difficult to
enforce rules of social responsibility. Just like Usenet and email, today's peer-to-peer systems run the
risk of being overrun by unsolicited advertisements. It is difficult to design a system where socially
inappropriate use is prevented. Technologies for accountability, such as cryptographic identification
or reputation systems, can be valuable tools to help manage a peer-to-peer network. There have been
proposals to retrofit these capabilities into Usenet and email, but none today are widespread; it is
important to build these capabilities into the system from the beginning. Chapter 16, discusses some
techniques for controlling spam, but these are still arcane.

page 12

Peer to Peer: Harnessing the Power of Disruptive Technologies

1.2.2.2 The TCP rate equation: Cooperative protocols

A fundamental design principle of the Internet is best effort packet delivery. "Best effort" means the
Internet does not guarantee that a packet will get through, simply that the Net will do its best to get
the packet to the destination. Higher-level protocols such as TCP create reliable connections by
detecting when a packet gets lost and resending it. A major reason packets do not get delivered on the
Internet is congestion: if a router in the network is overwhelmed, it will start dropping packets at
random. TCP accounts for this by throttling the speed at which it sends data. When the network is
congested, each individual TCP connection independently slows down, seeking to find the optimal rate
while not losing too many packets. But not only do individual TCP connections optimize their
bandwidth usage, TCP is also designed to make the Internet as a whole operate efficiently. The
collective behavior of many individual TCP connections backing off independently results in a
lessening of the congestion at the router, in a way that is exquisitely tuned to use the router's capacity
efficiently. In essence, the TCP backoff algorithm is a way for individual peers to manage a shared
resource without a central coordinator.

The problem is that the efficiency of TCP on the Internet scale fundamentally requires cooperation:
each network user has to play by the same rules. The performance of an individual TCP connection is
inversely proportional to the square root of the packet loss rate - part of the "TCP rate equation," a
fundamental governing law of the Internet. Protocols that follow this law are known as "TCP-friendly
protocols.” It is possible to design other protocols that do not follow the TCP rate equation, ones that
rudely try to consume more bandwidth than they should. Such protocols can wreak havoc on the Net,
not only using more than their fair share but actually spoiling the common resource for all. This
abstract networking problem is a classic example of a tragedy of the commons, and the Internet today
is quite vulnerable to it.

The problem is not only theoretical, it is also quite practical. As protocols have been built in the past
few years by companies with commercial demands, there has been growing concern that unfriendly
protocols will begin to hurt the Internet.

An early example was a feature added by Netscape to their browser - the ability to download several
files at the same time. The Netscape engineers discovered that if you downloaded embedded images in
parallel, rather than one at a time, the whole page would load faster and users would be happier. But
there was a question: was this usage of bandwidth fair? Not only does it tax the server to have to send
out more images simultaneously, but it creates more TCP channels and sidesteps TCP's congestion
algorithms. There was some controversy about this feature when Netscape first introduced it, a debate
quelled only after Netscape released the client and people discovered in practice that the parallel
download strategy did not unduly harm the Internet. Today this technique is standard in all browsers
and goes unquestioned. The questions have reemerged at the new frontier of " download accelerator”
programs that download different chunks of the same file simultaneously, again threatening to upset
the delicate management of Internet congestion.

A more troubling concern about congestion management is the growth of bandwidth-hungry
streaming broadband media. Typical streaming media applications do not use TCP, instead favoring
custom UDP-based protocols with their own congestion control and failure handling strategies. Many
of these protocols are proprietary; network engineers do not even have access to their
implementations to examine if they are TCP-friendly. So far there has been no major problem. The
streaming media vendors seem to be playing by the rules, and all is well. But fundamentally the
system is brittle, and either through a mistake or through greed the Internet's current delicate
cooperation could be toppled.

What do spam and the TCP rate algorithm have in common? They both demonstrate that the proper
operation of the Internet is fragile and requires the cooperation of everyone involved. In the case of
TCP, the system has mostly worked and the network has been preserved. In the case of spam,
however, the battle has been lost and unsocial behavior is with us forever. The lesson for peer-to-peer
system designers is to consider the issue of polite behavior up front. Either we must design systems
that do not require cooperation to function correctly, or we must create incentives for cooperation by
rewarding proper behavior or auditing usage so that misbehavior can be punished.

page 13

Peer to Peer: Harnessing the Power of Disruptive Technologies

1.2.3 Firewalls, dynamic IP, NAT: The end of the open network

At the same time that the cooperative nature of the Internet was being threatened, network
administrators implemented a variety of management measures that resulted in the Internet being a
much less open network. In the early days of the Internet, all hosts were equal participants. The
network was symmetric - if a host could reach the Net, everyone on the Net could reach that host.
Every computer could equally be a client and a server. This capability began to erode in the mid-1990s
with the deployment of firewalls, the rise of dynamic IP addresses, and the popularity of Network
Address Translation (NAT).

As the Internet matured there came a need to secure the network, to protect individual hosts from
unlimited access. By default, any host that can access the Internet can also be accessed on the
Internet. Since average users could not handle the security risks that resulted from a symmetric
design, network managers turned to firewalls as a tool to control access to their machines.

Firewalls stand at the gateway between the internal network and the Internet outside. They filter
packets, choosing which traffic to let through and which to deny. A firewall changes the fundamental
Internet model: some parts of the network cannot fully talk to other parts. Firewalls are a very useful
security tool, but they pose a serious obstacle to peer-to-peer communication models.

A typical firewall works by allowing anyone inside the internal network to initiate a connection to
anyone on the Internet, but it prevents random hosts on the Internet from initiating connections to
hosts in the internal network. This kind of firewall is like a one-way gate: you can go out, but you
cannot come in. A host protected in this way cannot easily function as a server; it can only be a client.
In addition, outgoing connections may be restricted to certain applications like FTP and the Web by
blocking traffic to certain ports at the firewall.

Allowing an Internet host to be only a client, not a server, is a theme that runs through a lot of the
changes in the Internet after the consumer explosion. With the rise of modem users connecting to the
Internet, the old practice of giving every Internet host a fixed IP address became impractical, because
there were not enough IP addresses to go around. Dynamic IP address assignment is now the norm for
many hosts on the Internet, where an individual computer's address may change every single day.
Broadband providers are even finding dynamic IP useful for their "always on" services. The end result
is that many hosts on the Internet are not easily reachable, because they keep moving around. Peer-to-
peer applications such as instant messaging or file sharing have to work hard to circumvent this
problem, building dynamic directories of hosts. In the early Internet, where hosts remained static, it
was much simpler.

A final trend is to not even give a host a valid public Internet address at all, but instead to use NAT to
hide the address of a host behind a firewall. NAT combines the problems of firewalls and dynamic IP
addresses: not only is the host's true address unstable, it is not even reachable! All communication has
to go through a fairly simple pattern that the NAT router can understand, resulting in a great loss of
flexibility in applications communications. For example, many cooperative Internet games have
trouble with NAT: every player in the game wants to be able to contact every other player, but the
packets cannot get through the NAT router. The result is that a central server on the Internet has to
act as an application-level message router, emulating the function that TCP/IP itself used to serve.

Firewalls, dynamic IP, and NAT grew out of a clear need in Internet architecture to make scalable,
secure systems. They solved the problem of bringing millions of client computers onto the Internet
quickly and manageably. But these same technologies have weakened the Internet infrastructure as a
whole, relegating most computers to second-class status as clients only. New peer-to-peer applications
challenge this architecture, demanding that participants serve resources as well as use them. As peer-
to-peer applications become more common, there will be a need for common technical solutions to
these problems.

page 14

Peer to Peer: Harnessing the Power of Disruptive Technologies

1.2.4 Asymmetric bandwidth

A final Internet trend of the late 1990s that presents a challenge to peer-to-peer applications is the rise
in asymmetric network connections such as ADSL and cable modems. In order to get the most
efficiency out of available wiring, current broadband providers have chosen to provide asymmetric
bandwidth. A typical ADSL or cable modem installation offers three to eight times more bandwidth
when getting data from the Internet than when sending data to it, favoring client over server usage.

The reason this has been tolerated by most users is clear: the Web is the killer app for the Internet,
and most users are only clients of the Web, not servers. Even users who publish their own web pages
typically do not do so from a home broadband connection, but instead use third-party dedicated
servers provided by companies like GeoCities or Exodus. In the early days of the Web it was not clear
how this was going to work: could each user have a personal web server? But in the end most Web use

is itself asymmetric - many clients, few servers - and most users are well served by asymmetric
bandwidth.

The problem today is that peer-to-peer applications are changing the assumption that end users only
want to download from the Internet, never upload to it. File-sharing applications such as Napster or
Gnutella can reverse the bandwidth usage, making a machine serve many more files than it
downloads. The upstream pipe cannot meet demand. Even worse, because of the details of TCP's rate
control, if the upstream path is clogged, the downstream performance suffers as well. So if a computer
is serving files on the slow side of a link, it cannot easily download simultaneously on the fast side.

ADSL and cable modems assume asymmetric bandwidth for an individual user. This assumption takes
hold even more strongly inside ISP networks, which are engineered for bits to flow to the users, not
from them. The end result is a network infrastructure that is optimized for computers that are only
clients, not servers. But peer-to-peer technology generally makes every host act both as a client and a
server; the asymmetric assumption is incorrect. There is not much an individual peer-to-peer
application can do to work around asymmetric bandwidth; as peer-to-peer applications become more
widespread, the network architecture is going to have to change to better handle the new traffic
patterns.

1.3 Observations on the current crop of peer-to-peer applications
(2000)

While the new breed of peer-to-peer applications can take lessons from earlier models, these
applications also introduce new characteristics or features that are novel. Peer-to-peer allows us to
separate the concepts of authoring information and publishing that same information. Peer-to-peer
allows for decentralized application design, something that is both an opportunity and a challenge.
And peer-to-peer applications place unique strains on firewalls, something well demonstrated by the
current trend to use the HTTP port for operations other than web transactions.

1.3.1 Authoring is not the same as publishing

One of the promises of the Internet is that people are able to be their own publishers, for example, by
using personal web sites to make their views and interests known. Self-publishing has certainly
become more common with the commercialization of the Internet. More often, however, users spend
most of their time reading (downloading) information and less time publishing, and as discussed
previously, commercial providers of Internet access have structured their offering around this
asymmetry.

The example of Napster creates an interesting middle ground between the ideal of "everyone
publishes" and the seeming reality of "everyone consumes." Napster particularly (and famously)
makes it very easy to publish data you did not author. In effect, your machine is being used as a
repeater to retransmit data once it reaches you. A network designer, assuming that there are only so
many authors in the world and therefore that asymmetric broadband is the perfect optimization, is
confounded by this development. This is why many networks such as college campuses have banned
Napster from use.

page 15

Peer to Peer: Harnessing the Power of Disruptive Technologies

Napster changes the flow of data. The assumptions that servers would be owned by publishers and
that publishers and authors would combine into a single network location have proven untrue. The
same observation also applies to Gnutella, Freenet, and others. Users don't need to create content in
order to want to publish it - in fact, the benefits of publication by the "reader" have been demonstrated
by the scale some of these systems have been able to reach.

1.3.2 Decentralization

Peer-to-peer systems seem to go hand-in-hand with decentralized systems. In a fully decentralized
system, not only is every host an equal participant, but there are no hosts with special facilitating or
administrative roles. In practice, building fully decentralized systems can be difficult, and many peer-
to-peer applications take hybrid approaches to solving problems. As we have already seen, DNS is
peer-to-peer in protocol design but with a built-in sense of hierarchy. There are many other examples
of systems that are peer-to-peer at the core and yet have some semi-centralized organization in
application, such as Usenet, instant messaging, and Napster.

Usenet is an instructive example of the evolution of a decentralized system. Usenet propagation is
symmetric: hosts share traffic. But because of the high cost of keeping a full news feed, in practice
there is a backbone of hosts that carry all of the traffic and serve it to a large number of "leaf nodes"
whose role is mostly to receive articles. Within Usenet, there was a natural trend toward making traffic
propagation hierarchical, even though the underlying protocols do not demand it. This form of "soft
centralization" may prove to be economic for many peer-to-peer systems with high-cost data
transmission.

Many other current peer-to-peer applications present a decentralized face while relying on a central
facilitator to coordinate operations. To a user of an instant messaging system, the application appears
peer-to-peer, sending data directly to the friend being messaged. But all major instant messaging
systems have some sort of server on the back end that facilitates nodes talking to each other. The
server maintains an association between the user's name and his or her current IP address, buffers
messages in case the user is offline, and routes messages to users behind firewalls. Some systems
(such as ICQ) allow direct client-to-client communication when possible but have a server as a
fallback. A fully decentralized approach to instant messaging would not work on today's Internet, but
there are scaling advantages to allowing client-to-client communication when possible.

Napster is another example of a hybrid system. Napster's file sharing is decentralized: one Napster
client downloads a file directly from another Napster client's machine. But the directory of files is
centralized, with the Napster servers answering search queries and brokering client connections. This
hybrid approach seems to scale well: the directory can be made efficient and uses low bandwidth, and
the file sharing can happen on the edges of the network.

In practice, some applications might work better with a fully centralized design, not using any peer-to-
peer technology at all. One example is a search on a large, relatively static database. Current web
search engines are able to serve up to one billion pages all from a single place. Search algorithms have
been highly optimized for centralized operation; there appears to be little benefit to spreading the
search operation out on a peer-to-peer network (database generation, however, is another matter).

Also, applications that require centralized information sharing for accountability or correctness are
hard to spread out on a decentralized network. For example, an auction site needs to guarantee that
the best price wins; that can be difficult if the bidding process has been spread across many locations.
Decentralization engenders a whole new area of network-related failures: unreliability, incorrect data
synchronization, etc. Peer-to-peer designers need to balance the power of peer-to-peer models against
the complications and limitations of decentralized systems.

1.3.3 Abusing port 80

One of the stranger phenomena in the current Internet is the abuse of port 80, the port that HTTP
traffic uses when people browse the Web. Firewalls typically filter traffic based on the direction of
traffic (incoming or outgoing) and the destination port of the traffic. Because the Web is a primary
application of many Internet users, almost all firewalls allow outgoing connections on port 80 even if
the firewall policy is otherwise very restrictive.

page 16

Peer to Peer: Harnessing the Power of Disruptive Technologies

In the early days of the Internet, the port number usually indicated which application was using the
network; the firewall could count on port 80 being only for Web traffic. But precisely because many
firewalls allow connections to port 80, other application authors started routing traffic through that
port. Streaming audio, instant messaging, remote method invocations, even whole mobile agents are
being sent through port 80. Most current peer-to-peer applications have some way to use port 80 as
well in order to circumvent network security policies. Naive firewalls are none the wiser; they are
unaware that they are passing the exact sorts of traffic the network administrator intended to block.

The problem is twofold. First, there is no good way for a firewall to identify what applications are
running through it. The port number has already been circumvented. Fancier firewalls can analyze the
actual traffic going through the firewall and see if it is a legitimate HTTP stream, but that just
encourages application designers to masquerade as HTTP, leading to an escalating arms race that
benefits no one.

The second problem is that even if an application has a legitimate reason to go through the firewall,
there is no simple way for the application to request permission. The firewall, as a network security
measure, is outmoded. As long as a firewall allows some sort of traffic through, peer-to-peer
applications will find a way to slip through that opening.

1.4 Peer-to-peer prescriptions (2001-?)

The story is clear: The Internet was designed with peer-to-peer applications in mind, but as it has
grown the network has become more asymmetric. What can we do to permit new peer-to-peer
applications to flourish while respecting the pressures that have shaped the Internet to date?

1.4.1 Technical solutions: Return to the old Internet

As we have seen, the explosion of the Internet into the consumer space brought with it changes that
have made it difficult to do peer-to-peer networking. Firewalls make it hard to contact hosts; dynamic
IP and NAT make it nearly impossible. Asymmetric bandwidth is holding users back from efficiently
serving files on their systems. Current peer-to-peer applications generally would benefit from an
Internet more like the original network, where these restrictions were not in place. How can we enable
peer-to-peer applications to work better with the current technological situation?

Firewalls serve an important need: they allow administrators to express and enforce policies about the
use of their networks. That need will not change with peer-to-peer applications. Neither application
designers nor network security administrators are benefiting from the current state of affairs. The
solution lies in making firewalls smarter so that peer-to-peer applications can cooperate with the
firewall to allow traffic the administrator wants. Firewalls must become more sophisticated, allowing
systems behind the firewall to ask permission to run a particular peer-to-peer application. Peer-to-
peer designers must contribute to this design discussion, then enable their applications to use these
mechanisms. There is a good start to this solution in the SOCKS protocol, but it needs to be expanded
to be more flexible and more tied toward applications rather than simple port numbers.

The problems engendered by dynamic IP and NAT already have a technical solution: IPv6. This new
version of IP, the next generation Internet protocol architecture, has a 128-bit address space - enough
for every host on the Internet to have a permanent address. Eliminating address scarcity means that
every host has a home and, in theory, can be reached. The main thing holding up the deployment of
IPv6 is the complexity of the changeover. At this stage, it remains to be seen when or even if IPv6 will
be commonly deployed, but without it peer-to-peer applications will continue to need to build
alternate address spaces to work around the limitations set by NAT and dynamic IP.

Peer-to-peer applications stress the bandwidth usage of the current Internet. First, they break the
assumption of asymmetry upon which today's ADSL and cable modem providers rely. There is no
simple way that peer-to-peer applications can work around this problem; we simply must encourage
broadband connections to catch up.

page 17

Peer to Peer: Harnessing the Power of Disruptive Technologies

However, peer-to-peer applications can do several things to use the existing bandwidth more
efficiently. First, data caching is a natural optimization for any peer-to-peer application that is
transmitting bulk data; it would be a significant advance to make sure that a program does not have to
retransmit or resend data to another host. Caching is a well understood technology: distributed caches
like Squid have worked out many of the consistency and load sharing issues that peer-to-peer
applications face.

Second, a peer-to-peer application must have effective means for allowing users to control the
bandwidth the application uses. If I run a Gnutella node at home, I want to specify that it can use only
50% of my bandwidth. Current operating systems and programming libraries do not provide good
tools for this kind of limitation, but as peer-to-peer applications start demanding more network
resources from hosts, users will need tools to control that resource usage.

1.4.2 Social solutions: Engineer polite behavior

Technical measures can help create better peer-to-peer applications, but good system design can also
yield social stability. A key challenge in creating peer-to-peer systems is to have a mechanism of
accountability and the enforcement of community standards. Usenet breaks down because it is
impossible to hold people accountable for their actions. If a system has a way to identify individuals
(even pseudonymously, to preserve privacy), that system can be made more secure against antisocial
behavior. Reputation tracking mechanisms, discussed in Chapter 16, and in Chapter 17, are valuable
tools here as well, to give the user community a collective memory about the behavior of individuals.

Peer-to-peer systems also present the challenge of integrating local administrative control with global
system correctness. Usenet was successful at this goal. The local news administrator sets policy for his
or her own site, allowing the application to be customized to each user group's needs. The shared
communication channel of news.admin allows a community governance procedure for the entire
Usenet community. These mechanisms of local and global control were built into Usenet from the
beginning, setting the rules of correct behavior. New breed peer-to-peer applications should follow
this lead, building in their own social expectations.

1.5 Conclusions

The Internet started out as a fully symmetric, peer-to-peer network of cooperating users. As the Net
has grown to accommodate the millions of people flocking online, technologies have been put in place
that have split the Net up into a system with relatively few servers and many clients. At the same time,
some of the basic expectations of cooperation are showing the risk of breaking down, threatening the
structure of the Net.

These phenomena pose challenges and obstacles to peer-to-peer applications: both the network and
the applications have to be designed together to work in tandem. Application authors must design
robust applications that can function in the complex Internet environment, and network designers
must build in capabilities to handle new peer-to-peer applications. Fortunately, many of these issues
are familiar from the experience of the early Internet; the lessons learned there can be brought
forward to design tomorrow's systems.

page 18

Peer to Peer: Harnessing the Power of Disruptive Technologies

Chapter 2. Listening to Napster

Clay Shirky, The Accelerator Group

Premature definition is a danger for any movement. Once a definitive label is applied to a new
phenomenon, it invariably begins shaping - and possibly distorting - people's views. So it is with the
present movement toward decentralized applications. After a year or so of attempting to describe the
revolution in file sharing and related technologies, we have finally settled on peer-to-peer as a label
for what's happening.

1] Thanks to Business 2.0, where many of these ideas first appeared, and to Dan Gillmor of the San Jose Mercury
Neuws, for first pointing out the important relationship between P2P and the Domain Name System.

Somehow, though, this label hasn't clarified things. Instead, it's distracted us from the phenomena
that first excited us. Taken literally, servers talking to one another are peer-to-peer. The game Doom is
peer-to-peer. There are even people applying the label to email and telephones. Meanwhile, Napster,
which jump-started the conversation, is not peer-to-peer in the strictest sense, because it uses a
centralized server to store pointers and resolve addresses.

If we treat peer-to-peer as a literal definition of what's happening, we end up with a phrase that
describes Doom but not Napster and suggests that Alexander Graham Bell is a peer-to-peer engineer
but Shawn Fanning is not. Eliminating Napster from the canon now that we have a definition we can
apply literally is like saying, "Sure, it may work in practice, but it will never fly in theory."

This literal approach to peer-to-peer is plainly not helping us understand what makes it important.
Merely having computers act as peers on the Internet is hardly novel. From the early days of PDP-11s
and Vaxes to the Sun SPARCs and Windows 2000 systems of today, computers on the Internet have
been peering with each other. So peer-to-peer architecture itself can't be the explanation for the recent
changes in Internet use.

What have changed are the nodes that make up these peer-to-peer systems - Internet-connected PCs,
which formerly were relegated to being nothing but clients - and where these nodes are: at the edges
of the Internet, cut off from the DNS (Domain Name System) because they have no fixed IP addresses.

2.1 Resource-centric addressing for unstable environments

Peer-to-peer is a class of applications that takes advantage of resources - storage, cycles, content,
human presence - available at the edges of the Internet. Because accessing these decentralized
resources means operating in an environment of unstable connectivity and unpredictable IP
addresses, peer-to-peer nodes must operate outside the DNS and have significant or total autonomy
from central servers.

That's it. That's what makes peer-to-peer distinctive.

Note that this isn't what makes peer-to-peer important. It's not the problem designers of peer-to-peer
systems set out to solve, like aggregating CPU cycles, sharing files, or chatting. But it's a problem they
all had to solve to get where they wanted to go.

What makes Napster and Popular Power and Freenet and AIMster and Groove similar is that they are
all leveraging previously unused resources, by tolerating and even working with variable connectivity.
This lets them make new, powerful use of the hundreds of millions of devices that have been
connected to the edges of the Internet in the last few years.

One could argue that the need for peer-to-peer designers to solve connectivity problems is little more
than an accident of history. But improving the way computers connect to one another was the
rationale behind the 1984 design of the Internet Protocol (IP), and before that DNS, and before that
the Transmission Control Protocol (TCP), and before that the Net itself. The Internet is made of such
frozen accidents.

page 19

Peer to Peer: Harnessing the Power of Disruptive Technologies

So if you're looking for a litmus test for peer-to-peer, this is it:
1. Does it allow for variable connectivity and temporary network addresses?
2. Does it give the nodes at the edges of the network significant autonomy?

If the answer to both of those questions is yes, the application is peer-to-peer. If the answer to either
question is no, it's not peer-to-peer.

Another way to examine this distinction is to think about ownership. Instead of asking, "Can the nodes
speak to one another?" ask, "Who owns the hardware that the service runs on?" The huge
preponderance of the hardware that makes Yahoo! work is owned by Yahoo! and managed in Santa
Clara. The huge preponderance of the hardware that makes Napster work is owned by Napster users
and managed on tens of millions of individual desktops. Peer-to-peer is a way of decentralizing not
just features, but costs and administration as well.

2.1.1 Peer-to-peer is as peer-to-peer does

Up until 1994, the Internet had one basic model of connectivity. Machines were assumed to be always
on, always connected, and assigned permanent IP addresses. DNS was designed for this environment,
in which a change in IP address was assumed to be abnormal and rare, and could take days to
propagate through the system.

With the invention of Mosaic, another model began to spread. To run a web browser, a PC needed to
be connected to the Internet over a modem, with its own IP address. This created a second class of
connectivity, because PCs entered and left the network cloud frequently and unpredictably.

Furthermore, because there were not enough IP addresses available to handle the sudden demand
caused by Mosaic, ISPs began to assign IP addresses dynamically. They gave each PC a different,
possibly masked, IP address with each new session. This instability prevented PCs from having DNS
entries, and therefore prevented PC users from hosting any data or applications that accepted
connections from the Net.

For a few years, treating PCs as dumb but expensive clients worked well. PCs had never been designed
to be part of the fabric of the Internet, and in the early days of the Web, the toy hardware and
operating systems of the average PC made it an adequate life-support system for a browser but good
for little else.

Over time, though, as hardware and software improved, the unused resources that existed behind this
veil of second-class connectivity started to look like something worth getting at. At a conservative
estimate - assuming only 100 million PCs among the Net's 300 million users, and only a 100 MHz
chip and 100 MB drive on the average Net-connected PC - the world's Net-connected PCs presently
host an aggregate 10 billion megahertz of processing power and 10 thousand terabytes of storage.

2.1.2 The veil is pierced

The launch of ICQ, the first PC-based chat system, in 1996 marked the first time those intermittently
connected PCs became directly addressable by average users. Faced with the challenge of establishing
portable presence, ICQ bypassed DNS in favor of creating its own directory of protocol-specific
addresses that could update IP addresses in real time, a trick followed by Groove, Napster, and
NetMeeting as well. (Not all peer-to-peer systems use this trick. Gnutella and Freenet, for example,
bypass DNS the old-fashioned way, by relying on numeric IP addresses. United Devices and
SETI@home bypass it by giving the nodes scheduled times to contact fixed addresses, at which times
they deliver their current IP addresses.)

A run of whois counts 23 million domain names, built up in the 16 years since the inception of IP
addresses in 1984. Napster alone has created more than 23 million non-DNS addresses in 16 months,
and when you add in all the non-DNS instant messaging addresses, the number of peer-to-peer
addresses designed to reach dynamic IP addresses tops 200 million. Even if you assume that the
average DNS host has 10 additional addresses of the form foo.host.com, the total number of peer-to-
peer addresses now, after only 4 years, is of the same order of magnitude as the total number of DNS
addresses, and is growing faster than the DNS universe today.

page 20

Peer to Peer: Harnessing the Power of Disruptive Technologies

As new kinds of Net-connected devices like wireless PDAs and digital video recorders such as TiVo
and Replay proliferate, they will doubtless become an important part of the Internet as well. But for
now, PCs make up the enormous majority of these untapped resources. PCs are the dark matter of the
Internet, and their underused resources are fueling peer-to-peer.

2.1.3 Real solutions to real problems

Why do we have unpredictable IP addresses in the first place? Because there weren't enough to go
around when the Web happened. It's tempting to think that when enough new IP addresses are
created, the old "One Device/One Address" regime will be restored, and the Net will return to its pre-
peer-to-peer architecture.

This won't happen, though, because no matter how many new IP addresses there are, peer-to-peer
systems often create addresses for things that aren't machines. Freenet and Mojo Nation create
addresses for content intentionally spread across multiple computers. AOL Instant Messenger (AIM)
and ICQ create names that refer to human beings and not machines. Peer-to-peer is designed to
handle unpredictability, and nothing is more unpredictable than the humans who use the network. As
the Net becomes more human-centered, the need for addressing schemes that tolerate and even
expect temporary and unstable patterns of use will grow.

2.1.4 Who's in and who's out?

Napster is peer-to-peer because the addresses of Napster nodes bypass DNS, and because once the
Napster server resolves the IP addresses of the PCs hosting a particular song, it shifts control of the
file transfers to the nodes. Furthermore, the ability of the Napster nodes to host the songs without
central intervention lets Napster users get access to several terabytes of storage and bandwidth at no
additional cost.

However, Intel's "server peer-to-peer" is not peer-to-peer, because servers have always been peers.
Their fixed IP addresses and permanent connections present no new problems, and calling what they
already do "peer-to-peer" presents no new solutions.

ICQ and Jabber are peer-to-peer, because they not only devolve connection management to the
individual nodes after resolving the addresses, but they also violate the machine-centric worldview
encoded in DNS. Your address has nothing to do with the DNS hierarchy, or even with a particular
machine, except temporarily; your chat address travels with you. Furthermore, by mapping "presence"
- whether you are at your computer at any given moment in time - chat turns the old idea of
permanent connectivity and IP addresses on its head. Transient connectivity is not an annoying
hurdle in the case of chat but an important contribution of the technology.

Email, which treats variable connectivity as the norm, nevertheless fails the peer-to-peer definition
test because your address is machine-dependent. If you drop AOL in favor of another ISP, your AOL
email address disappears as well, because it hangs off DNS. Interestingly, in the early days of the
Internet, there was a suggestion to make the part of the email address before the @ globally unique,
linking email to a person rather than to a person@machine. That would have been peer-to-peer in the
current sense, but it was rejected in favor of a machine-centric view of the Internet.

Popular Power is peer-to-peer, because the distributed clients that contact the server need no fixed IP
address and have a high degree of autonomy in performing and reporting their calculations. They can
even be offline for long stretches while still doing work for the Popular Power network.

Dynamic DNS is not peer-to-peer, because it tries to retrofit PCs into traditional DNS.

And so on. This list of resources that current peer-to-peer systems take advantage of - storage, cycles,
content, presence - is not necessarily complete. If there were some application that needed 30,000
separate video cards, or microphones, or speakers, a peer-to-peer system could be designed that used
those resources as well.

page 21

Peer to Peer: Harnessing the Power of Disruptive Technologies

2.1.5 Peer-to-peer is a horseless carriage

As with the "horseless" carriage or the "compact” disc, new technologies are often labeled according to
some simple difference between them and what came before (horse-drawn carriages, non-compact
records).

Calling this new class of applications peer-to-peer emphasizes their difference from the dominant
client/server model. However, like the horselessness of the carriage or the compactness of the disc,
the "peeriness" of peer-to-peer is more a label than a definition.

As we've learned from the history of the Internet, adoption is a better predictor of software longevity
than elegant design. Users will not adopt peer-to-peer applications that embrace decentralization for
decentralization's sake. Instead, they will adopt those applications that use just enough
decentralization, in just the right way, to create novel functions or improve existing ones.

2.2 Follow the users

It seems obvious but bears repeating: Definitions are useful only as tools for sharpening one's
perception of reality and improving one's ability to predict the future. Whatever one thinks of
Napster's probable longevity, Napster is the killer app for this revolution.

If the Internet has taught technology watchers anything, it's that predictions of the future success of a
particular software method or paradigm are of tenuous accuracy at best. Consider the history of
"multimedia." If you had read almost any computer trade magazine or followed any technology
analyst's predictions for the rise of multimedia in the early '9os, the future they predicted was one of
top-down design, and this multimedia future was to be made up of professionally produced CD-ROMs
and "walled garden" online services such as CompuServe and Delphi. And then the Web came along
and let absolute amateurs build pages in HTML, a language that was laughably simple compared to
the tools being developed for other multimedia services.

2.2.1 Users reward simplicity

HTML's simplicity, which let amateurs create content for little cost and little invested time, turned out
to be HTML's long suit. Between 1993 and 1995, HTML went from an unknown protocol to the
preeminent tool for designing electronic interfaces, decisively displacing almost all challengers and
upstaging CD-ROMs, as well as online services and a dozen expensive and abortive experiments with
interactive TV - and it did this while having no coordinated authority, no central R&D effort, and no
discernible financial incentive for the majority of its initial participants.

What caught the tech watchers in the industry by surprise was that HTML was made a success not by
corporations but by users. The obvious limitations of the Web for professional designers blinded many
to HTML's ability to allow average users to create multimedia content.

HTML spread because it allowed ordinary users to build their own web pages, without requiring that
they be software developers or even particularly savvy software users. All the confident predictions
about the CD-ROM-driven multimedia future turned out to be meaningless in the face of user
preference. This in turn led to network effects on adoption: once a certain number of users had
adopted it, there were more people committed to making the Web better than there were people
committed to making CD-ROM authoring easier for amateurs.

The lesson of HTML's astonishing rise for anyone trying to make sense of the social aspects of
technology is simple: follow the users. Understand the theory, study the engineering, but most
importantly, follow the adoption rate. The cleanest theory and the best engineering in the world mean
nothing if the users don't use them, and understanding why some solution will never work in theory
means nothing if users adopt it all the same.

page 22

Peer to Peer: Harnessing the Power of Disruptive Technologies

2.2.2 Listen to Napster

In the present circumstance, the message that comes from paying attention to the users is simple:
Listen to Napster.

Listen to what the rise of Napster is saying about peer-to-peer, because as important as Groove or
Freenet or OpenCOLA may become, Napster is already a mainstream phenomenon. Napster has had
over 40 million client downloads at the time of this writing. Its adoption rate has outstripped NCSA
Mosaic, Hotmail, and even ICQ, the pioneer of P2P addressing. Because Napster is what the users are
actually spending their time using, the lessons we can take from Napster are still our best guide to the
kind of things that are becoming possible with the rise of peer-to-peer architecture.

2.2.2.1 It's the applications, stupid

The first lesson Napster holds is that it was written to solve a problem - limitations on file copying -
and the technological solutions it adopted were derived from the needs of the application, not vice
versa.

The fact that the limitations on file copying are legal ones matters little to the technological lessons to
be learned from Napster, because technology is often brought to bear to solve nontechnological
problems. In this case, the problem Shawn Fanning, Napster's creator, set out to solve was a gap
between what was possible with digital songs (endless copying at a vanishingly small cost) and what
was legal. The willingness of the major labels to destroy any file copying system they could reach made
the classic Web model of central storage of data impractical, meaning Napster had to find a non-Web-
like solution.

2.2.2.2 Decentralization is a tool, not a goal

The primary fault of much of the current thinking about peer-to-peer lies in an "if we build it, they will
come" mentality, where interesting technological challenges of decentralizing applications are
assumed to be the only criterion that a peer-to-peer system needs to address in order to succeed. The
enthusiasm for peer-to-peer has led to a lot of incautious statements about the superiority of peer-to-
peer for many, and possibly most, classes of networked applications.

In fact, peer-to-peer is distinctly bad for many classes of networked applications. Most search engines
work best when they can search a central database rather than launch a meta-search of peers.
Electronic marketplaces need to aggregate supply and demand in a single place at a single time in
order to arrive at a single, transparent price. Any system that requires real-time group access or rapid
searches through large sets of unique data will benefit from centralization in ways that will be difficult
to duplicate in peer-to-peer systems.

The genius of Napster is that it understands and works within these limitations.

Napster mixes centralization and decentralization beautifully. As a search engine, it builds and
maintains a master song list, adding and removing songs as individual users connect and disconnect
their PCs. And because the search space for Napster - popular music - is well understood by all its
users, and because there is massive redundancy in the millions of collections it indexes, the chances
that any given popular song can be found are very high, even if the chances that any given user is
online are low.

Like ants building an anthill, the contribution of any given individual to the system at any given
moment is trivial, but the overlapping work of the group is remarkably powerful. By centralizing
pointers and decentralizing content, Napster couples the strengths of a central database with the
power of distributed storage. Napster has become the fastest-growing application in the Net's history
in large part because it isn't pure peer-to-peer. Chapter 4, explores this theme farther.

page 23

Peer to Peer: Harnessing the Power of Disruptive Technologies

2.3 Where's the content?

Napster's success in pursuing this strategy is difficult to overstate. At any given moment, Napster
servers keep track of thousands of PCs holding millions of songs comprising several terabytes of data.
This is a complete violation of the Web's data model, "Content at the Center," and Napster's success in
violating it could be labeled "Content at the Edges."

The content-at-the-center model has one significant flaw: most Internet content is created on the PCs
at the edges, but for it to become universally accessible, it must be pushed to the center, to always-on,
always-up web servers. As anyone who has ever spent time trying to upload material to a web site
knows, the Web has made downloading trivially easy, but uploading is still needlessly hard. Napster
dispenses with uploading and leaves the files on the PCs, merely brokering requests from one PC to
another - the MP3 files do not have to travel through any central Napster server. Instead of trying to
store these files in a central database, Napster took advantage of the largest pool of latent storage
space in the world - the disks of the Napster users. And thus, Napster became the prime example of a
new principle for Internet applications: Peer-to-peer services come into being by leveraging the
untapped power of the millions of PCs that have been connected to the Internet in the last five years.

2.3.1 PCs are the dark matter of the Internet

Napster's popularity made it the proof-of-concept application for a new networking architecture based
on the recognition that bandwidth to the desktop had become fast enough to allow PCs to serve data
as well as request it, and that PCs are becoming powerful enough to fulfill this new role. Just as the
application service provider (ASP) model is taking off, Napster's success represents the revenge of the
PC. By removing the need to upload data (the single biggest bottleneck to the ASP model), Napster
points the way to a reinvention of the desktop as the center of a user's data - only this time the user
will no longer need physical access to the PC.

The latent capabilities of PC hardware made newly accessible represent a huge, untapped resource
and form the fuel powering the current revolution in Internet use. No matter how it gets labeled, the
thing that a file-sharing system like Gnutella and a distributed computing network like Data Synapse
have in common is an ability to harness this dark matter, the otherwise underused hardware at the
edges of the Net.

2.3.2 Promiscuous computers

While some press reports call the current trend the "Return of the PC," it's more than that. In these
new models, PCs aren't just tools for personal use - they're promiscuous computers, hosting data the
rest of the world has access to, and sometimes even hosting calculations that are of no use to the PC's
owner at all, like Popular Power's influenza virus simulations.

Furthermore, the PCs themselves are being disaggregated: Popular Power will take as much CPU time
as it can get but needs practically no storage, while Gnutella needs vast amounts of disk space but
almost no CPU time. And neither kind of business particularly needs the operating system - since the
important connection is often with the network rather than the local user, Intel and Seagate matter
more to the peer-to-peer companies than do Microsoft or Apple.

It's too soon to understand how all these new services relate to one another, and the danger of the
peer-to-peer label is that it may actually obscure the real engineering changes afoot. With
improvements in hardware, connectivity, and sheer numbers still mounting rapidly, anyone who can
figure out how to light up the Internet's dark matter gains access to a large and growing pool of
computing resources, even if some of the functions are centralized.

It's also too soon to see who the major players will be, but don't place any bets on people or companies
that reflexively use the peer-to-peer label. Bet instead on the people figuring out how to leverage the
underused PC hardware, because the actual engineering challenges in taking advantage of the
underused resources at the edges of the Net matter more - and will create more value - than merely
taking on the theoretical challenges of peer-to-peer architecture.

page 24

Peer to Peer: Harnessing the Power of Disruptive Technologies

2.4 Nothing succeeds like address, or, DNS isn't the only game in
town

The early peer-to-peer designers, realizing that interesting services could be run off of PCs if only they
had real addresses, simply ignored DNS and replaced the machine-centric model with a protocol-
centric one. Protocol-centric addressing creates a parallel namespace for each piece of software. AIM
and Napster usernames are mapped to temporary IP addresses not by the Net's DNS servers, but by
privately owned servers dedicated to each protocol: the AIM server matches AIM names to the users'
current IP addresses, and so on.

In Napster's case, protocol-centric addressing turns Napster into merely a customized FTP for music
files. The real action in new addressing schemes lies in software like AIM, where the address points to
a person, not a machine. When you log into AIM, the address points to you, no matter what machine
you're sitting at, and no matter what IP address is presently assigned to that machine. This completely
decouples what humans care about - Can I find my friends and talk with them online? - from how the
machines go about it - Route packet A to IP address X.

This is analogous to the change in telephony brought about by mobile phones. In the same way that a
phone number is no longer tied to a particular physical location but is dynamically mapped to the
location of the phone's owner, an AIM address is mapped to you, not to a machine, no matter where
you are.

2.4.1 An explosion of protocols

This does not mean that DNS is going away, any more than landlines went away with the invention of
mobile telephony. It does mean that DNS is no longer the only game in town. The rush is now on, with
instant messaging protocols, single sign-on and wallet applications, and the explosion in peer-to-peer
businesses, to create and manage protocol-centric addresses that can be instantly updated.

Nor is this change in the direction of easier peer-to-peer addressing entirely to the good. While it is
always refreshing to see people innovate their way around a bottleneck, sometimes bottlenecks are
valuable. While AIM and Napster came to their addressing schemes honestly, any number of people
have noticed how valuable it is to own a namespace, and many business plans making the rounds are
just me-too copies of Napster or AIM. Eventually, the already growing list of kinds of addresses -
phone, fax, email, URL, AIM, ad nauseam - could explode into meaninglessness.

Protocol-centric namespaces will also force the browser into lesser importance, as users return to the
days when they managed multiple pieces of Internet software. Or it will mean that addresses like
aim://12345678 or napster://green_day_ fan will have to be added to the browsers' repertoire of
recognized URLs. Expect also the rise of " meta-address" servers, which offer to manage a user's
addresses for all of these competing protocols, and even to translate from one kind of address to
another. (These meta-address servers will, of course, need their own addresses as well.) Chapter 19,
looks at some of the issues involved .

It's not clear what is going to happen to Internet addressing, but it is clear that it's going to get a lot
more complicated before it gets simpler. Fortunately, both the underlying IP addressing system and
the design of URLs can handle this explosion of new protocols and addresses. But that familiar DNS
bit in the middle (which really put the dot in dot-com) will never recover the central position it has
occupied for the last two decades, and that means that a critical piece of Internet infrastructure is now
up for grabs.

page 25

aim://12345678
napster://green_day_

Peer to Peer: Harnessing the Power of Disruptive Technologies

2.5 An economic rather than legal challenge

Much has been made of the use of Napster for what the music industry would like to define as
"piracy." Even though the dictionary definition of piracy is quite broad, this is something of a
misnomer, because pirates are ordinarily in business to sell what they copy. Not only do Napster users
not profit from making copies available, but Napster works precisely because the copies are free. (Its
recent business decision to charge a monthly fee for access doesn't translate into profits for the
putative "pirates" at the edges.)

What Napster does is more than just evade the law, it also upends the economics of the music
industry. By extension, peer-to-peer systems are changing the economics of storing and transmitting
intellectual property in general.

The resources Napster is brokering between users have one of two characteristics: they are either
replicable or replenishable.

Replicable resources include the MP3 files themselves. "Taking" an MP3 from another user involves
no loss (if I "take" an MP3 from you, it is not removed from your hard drive) - better yet, it actually
adds resources to the Napster universe by allowing me to host an alternate copy. Even if I am a
freeloader and don't let anyone else copy the MP3 from me, my act of taking an MP3 has still not
caused any net loss of MP3s.

Other important resources, such as bandwidth and CPU cycles (as in the case of systems like
SETI@home), are not replicable, but they are replenishable. The resources can be neither depleted
nor conserved. Bandwidth and CPU cycles expire if they are not used, but they are immediately
replenished. Thus they cannot be conserved in the present and saved for the future, but they can't be
"used up" in any long-term sense either.

Because of these two economic characteristics, the exploitation of otherwise unused bandwidth to
copy MP3s across the network means that additional music can be created at almost zero marginal
cost to the user. It employs resources - storage, cycles, bandwidth - that the users have already paid for
but are not fully using.

2.5.1 All you can eat

Economists call these kinds of valuable side effects " positive externalities." The canonical example of
a positive externality is a shade tree. If you buy a tree large enough to shade your lawn, there is a good
chance that for at least part of the day it will shade your neighbor's lawn as well. This free shade for
your neighbor is a positive externality, a benefit to her that costs you nothing more than what you
were willing to spend to shade your own lawn anyway.

Napster's signal economic genius is to coordinate such effects. Other than the central database of
songs and user addresses, every resource within the Napster network is a positive externality.
Furthermore, Napster coordinates these externalities in a way that encourages altruism. As long as
Napster users are able to find the songs they want, they will continue to participate in the system, even
if the people who download songs from them are not the same people they download songs from. And
as long as even a small portion of the users accept this bargain, the system will grow, bringing in more
users, who bring in more songs.

Thus Napster not only takes advantage of low marginal costs, it couldn't work without them. Imagine
how few people would use Napster if it cost them even a penny every time someone else copied a song
from them. As with other digital resources that used to be priced per unit but became too cheap to
meter, such as connect time or per-email charges, the economic logic of infinitely copyable resources
or non-conservable and non-depletable resources eventually leads to "all you can eat" business
models.

Thus the shift from analog to digital data, in the form of CDs and then MP3s, is turning the music
industry into a smorgasbord. Many companies in the traditional music business are not going quietly,
however, but are trying to prevent these "all you can eat" models from spreading. Because they can't
keep music entirely off the Internet, they are currently opting for the next best thing, which is trying to
force digital data to behave like objects.

page 26

Peer to Peer: Harnessing the Power of Disruptive Technologies

2.5.2 Yesterday's technology at tomorrow's prices, two days late

The music industry's set of schemes, called Digital Rights Management (DRM), is an attempt to force
music files to behave less like ones and zeros and more like albums and tapes. The main DRM effort is
the Secure Digital Music Initiative (SDMI), which aims to create a music file format that cannot be
easily copied or transferred between devices - to bring the inconvenience of the physical world to the
Internet, in other words.

This in turn has led the industry to make the argument that the music-loving public should be willing
to pay the same price for a song whether delivered on CD or downloaded, because it is costing the
industry so much money to make the downloaded file as inconvenient as the CD. When faced with the
unsurprising hostility this argument engendered, the industry has suggested that matters will go their
way once users are sufficiently "educated."

Unfortunately for the music industry, the issue here is not education. In the analog world, it costs
money to make a copy of something. In the digital world, it costs money to prevent copies from being
made. Napster has demonstrated that systems that work with the economic logic of the Internet rather
than against it can have astonishing growth characteristics, and no amount of user education will
reverse that.

2.5.3 30 million Britney fans does not a revolution make

Within this economic inevitability, however, lies the industry's salvation, because despite the rants of
a few artists and techno-anarchists who believed that Napster users were willing to go to the ramparts
for the cause, large-scale civil disobedience against things like Prohibition or the 55 MPH speed limit
has usually been about relaxing restrictions, not repealing them.

Despite the fact that it is still possible to make gin in your bathtub, no one does it anymore, because
after Prohibition ended high-quality gin became legally available at a price and with restrictions
people could live with. Legal and commercial controls did not collapse, but were merely altered.

To take a more recent example, the civil disobedience against the 55 MPH speed limit did not mean
that drivers were committed to having no speed limit whatsoever; they simply wanted a higher one.

So it will be with the music industry. The present civil disobedience is against a refusal by the music
industry to adapt to Internet economics. But the refusal of users to countenance per-unit prices does
not mean they will never pay for music at all, merely that the economic logic of digital data - its
replicability and replenishability - must be respected. Once the industry adopts economic models that
do, whether through advertising or sponsorship or subscription pricing, the civil disobedience will
largely subside, and we will be on the way to a new speed limit.

In other words, the music industry as we know it is not finished. On the contrary, all of their functions
other than the direct production of the CDs themselves will become more important in a world where
Napster economics prevail. Music labels don't just produce CDs; they find, bankroll, and publicize the
musicians themselves. Once they accept that Napster has destroyed the bottleneck of distribution,
there will be more music to produce and promote, not less.

2.6 Peer-to-peer architecture and second-class status

With this change in addressing schemes and the renewed importance of the PC chassis, peer-to-peer is
not merely erasing the distinction between client and server. It's erasing the distinction between
consumer and provider as well. You can see the threat to the established order in a recent legal action:
a San Diego cable ISP, Cox@Home, ordered several hundred customers to stop running Napster not
because they were violating copyright laws, but because Napster leads Cox subscribers to use too
much of its cable network bandwidth.

Cox built its service on the current web architecture, where producers serve content from always-
connected servers at the Internet's center and consumers consume from intermittently connected
client PCs at the edges. Napster, on the other hand, inaugurated a model where PCs are always on and
always connected, where content is increasingly stored and served from the edges of the network, and
where the distinction between client and server is erased. Cox v. Napster isn't just a legal fight; it's a
fight between a vision of helpless, passive consumers and a vision where people at the network's edges
can both consume and produce.

page 27

Peer to Peer: Harnessing the Power of Disruptive Technologies

2.6.1 Users as consumers, users as providers

The question of the day is, "Can Cox (or any media business) force its users to retain their second-class
status as mere consumers of information?" To judge by Napster's growth, the answer is "No."

The split between consumers and providers of information has its roots in the Internet's addressing
scheme. Cox assumed that the model ushered in by the Web - in which users never have a fixed IP
address, so they can consume data stored elsewhere but never provide anything from their own PCs -
was a permanent feature of the landscape. This division wasn't part of the Internet's original
architecture, and the proposed fix (the next generation of IP, called IPv6) has been coming Real Soon
Now for a long time. In the meantime, services like Cox have been built with the expectation that this
consumer/provider split would remain in effect for the foreseeable future.

How short the foreseeable future sometimes is. When Napster turned the Domain Name System
inside out, it became trivially easy to host content on a home PC, which destroys the asymmetry where
end users consume but can't provide. If your computer is online, it can be reached even without a
permanent IP address, and any material you decide to host on your PC can become globally accessible.
Napster-style architecture erases the people-based distinction between provider and consumer just as
surely as it erases the computer-based distinction between server and client.

There could not be worse news for any ISP that wants to limit upstream bandwidth on the expectation
that edges of the network host nothing but passive consumers. The limitations of cable ISPs (and
Asymmetric Digital Subscriber Line, or ADSL) become apparent only if its users actually want to do
something useful with their upstream bandwidth. The technical design of the cable network that
hamstrings its upstream speed (upstream speed is less than a tenth of Cox's downstream) just makes
the cable networks the canary in the coal mine.

2.6.2 New winners and losers

Any media business that relies on a neat division between information consumer and provider will be
affected by roving, peer-to-peer applications. Sites like GeoCities, which made their money providing
fixed addresses for end user content, may find that users are perfectly content to use their PCs as that
fixed address. Copyright holders who have assumed up until now that only a handful of relatively
identifiable and central locations were capable of large-scale serving of material are suddenly going to
find that the Net has sprung another million leaks.

Meanwhile, the rise of the end user as information provider will be good news for other businesses.
DSL companies (using relatively symmetric technologies) will have a huge advantage in the race to
provide fast upstream bandwidth; Apple may find that the ability to stream home movies over the Net
from a PC at home drives adoption of Mac hardware and software; and of course companies that
provide the Napster-style service of matching dynamic IP addresses with fixed names will have just
the sort of sticky relationship with their users that venture capitalists slaver over.

Real technological revolutions are human revolutions as well. The architecture of the Internet has
effected the largest transfer of power from organizations to individuals the world has ever seen, and it
is only getting started. Napster's destruction of the serving limitations on end users shows how
temporary such bottlenecks can be. Power is gradually shifting to the individual for things like stock
brokering and buying airline tickets. Media businesses that have assumed such shifts wouldn't affect
them are going to be taken by surprise when millions of passive consumers are replaced by millions of
one-person media channels.

This is not to say that all content is going to the edges of the Net, or that every user is going to be an
enthusiastic media outlet. But enough consumers will become providers as well to blur present
distinctions between producer and consumer. This social shift will make the next generation of the
Internet, currently being assembled, a place with greater space for individual contributions than
people accustomed to the current split between client and server, and therefore provider and
consumer, had ever imagined.

page 28

Peer to Peer: Harnessing the Power of Disruptive Technologies

Chapter 3. Remaking the Peer-to-Peer Meme

Tim O'Reilly, O'Reilly & Associates

On September 18, 2000, I organized a so-called " peer-to-peer summit" to explore the bounds of peer-
to-peer networking. In my invitation to the attendees, I set out three goals:

1. To make a statement, by their very coming together, about the nature of peer-to-peer and
what kinds of technologies people should think of when they hear the term.

2. To make some introductions among people whom I like and respect and who are working on
different aspects of what could be seen as the same problem - peer-to-peer solutions to big
problems - in order to create some additional connections between technical communities
that ought to be talking to and learning from each other.

3. To do some brainstorming about the issues each of us are uncovering, so we can keep projects
from reinventing the wheel and foster cooperation to accelerate mutual growth.

In organizing the summit, I was thinking of the free software (open source) summit I held a few years
back. Like free software at that time, peer-to-peer currently has image problems and a difficulty
developing synergy. The people I was talking to all knew that peer-to-peer is more than just swapping
music files, but the wider world was still focusing largely on the threats to copyright. Even people
working in the field of peer-to-peer have trouble seeing how far its innovations can extend; it would
benefit them to learn how many different types of technologies share the same potential and the same
problems.

This is exactly what we did with the open source summit. By bringing together people from a whole lot
of projects, we were able to get the world to recognize that free software was more than GNU and
Linux; we introduced a lot of people, many of whom, remarkably, had never met; we talked shop; and
ultimately, we crafted a new "meme" that completely reshaped the way people thought about the
space.

The people I invited to the peer-to-peer summit tell part of the story. Gene Kan from Gnutella
(http://gnutella.wego.com/) and Ian Clarke from Freenet (http://freenet.sourceforge.net/) were
obvious choices. They matched the current industry buzz about peer-to-peer file sharing. Similarly,
Marc Hedlund and Nelson Minar from Popular Power (http://www.popularpower.com/) made sense,
because there was already a sense of some kind of connection between distributed computation and
file sharing.

But why did I invite Jeremie Miller of Jabber and Ray Ozzie of Groove, Ken Arnold from Sun's Jini
project and Michael Tiemann of Red Hat, Marshall Rose (author of BXXP and IMXP), Rael Dornfest
of meerkat and RSS 1.0, Dave Stutz of Microsoft, Andy Hertzfeld of Eazel, Don Box (one of the authors
of SOAP) and Steve Burbeck (one of the authors of UDDI)? (Note that not all of these people made it
to the summit; Ian Clarke sent Scott Miller in his stead, and Ken Arnold and Don Box had to cancel at
the last minute.) As I said in my invitation:

[T've invited] a group of people who collectively bracket what I consider a new
paradigm, which could perhaps best be summarized by Sun's slogan, "The Network
is the Computer." They're all working on parts of what I consider the next-
generation Net story.

This chapter reports on some of the ideas discussed at the summit. It continues the job of trying to
reshape the way people think about that "next-generation Net story" and the role of peer-to-peer in
telling that story. It also shows one of the tools I used at the meeting - something I'll call a " meme
map" - and presents the results of the meeting in that form.

The concepts we bear in our minds are, at bottom, maps of reality. Bad maps lead to bad decisions. If
we believe peer-to-peer is about illegal sharing of copyrighted material, we'll continue to see rhetoric
about copyright and censorship at the heart of the debate, and may push for ill-advised legal
restrictions on the use of the technology. If we believe it's about a wider class of decentralized
networking applications, we'll focus instead on understanding what those applications are good for
and on advancing the state of the art.

page 29

http://gnutella.wego.com/
http://freenet.sourceforge.net/
http://www.popularpower.com/

Peer to Peer: Harnessing the Power of Disruptive Technologies

The meme map we developed at the peer-to-peer summit has two main benefits. First, the peer-to-
peer community can use it to organize itself - to understand who is doing related work and identify
areas where developers can learn from each other. Second, the meme map helps the community
influence outsiders. It can create excitement where there previously was indifference and turn
negative impressions into positive ones. Tangentially, the map is also useful in understanding the
thinking behind the O'Reilly Network's P2P directory, a recent version of which is republished in this
book as an appendix.

First, though, a bit of background.

3.1 From business models to meme maps

Recently, I started working with Dan and Meredith Beam of Beam, Inc., a strategy consulting firm.
Dan and Meredith help companies build their "business models" - one page pictures that describe
"how all the elements of a business work together to build marketplace advantage and company
value." It's easy to conclude that two companies selling similar products and services are in the same
business, but the Beams think otherwise.

For example, O'Reilly and IDG compete in the computer book publishing business, but we have
completely different business models. Their strategic positioning is to appeal to the "dummy" who
needs to learn about computers but doesn't really want to. Ours is to appeal to the people who love
computers and want to go as deep as possible. Their marketing strategy is to build a widely recognized
consumer brand, and then dominate retail outlets and "big box" stores in hopes of putting product in
front of consumers who might happen to walk by in search of any book on a given subject. Our
marketing strategy is to build awareness of our brand and products in the core developer and user
communities, who then buy directly or drive traffic to retail outlets. The former strategy pushes
product into distribution channels in an aggressive bid to reach unknown consumers; the latter pulls
products into distribution channels as they are requested by consumers who are already looking for
the product. Both companies are extremely successful, but our different business models require
different competencies. I won't say more lest this chapter turn into a lesson for O'Reilly competitors,
but hopefully I have said enough to get the idea across.

Boiling all the elements of your business down into a one-page picture is a really useful exercise. But
what is even more useful is that Dan and Meredith have you run the exercise twice, once to describe
your present business, and once to describe it as you want it to be.

At any rate, fresh from the strategic planning process at O'Reilly, it struck me that an adaptation of
this idea would be useful preparation for the summit. We weren't modeling a single business but a
technology space - the key projects, concepts, and messages associated with it.

I call these pictures "meme maps" rather than "business models" in honor of Richard Dawkins'
wonderful contribution to cultural studies. He formulated the idea of "memes" as ideas that spread
and reproduce themselves, passed on from mind to mind. Just as gene engineering allows us to
artificially shape genes, meme engineering lets us organize and shape ideas so that they can be
transmitted more effectively, and have the desired effect once they are transmitted. That's what I
hoped to touch off at the summit, using a single picture that shows how a set of technologies fit
together and demonstrates a few central themes.

3.1.1 A success story: From free software to open source

In order to illustrate the idea of a meme map to the attendees at the peer-to-peer summit, I drew some
maps of free software versus open source. I presented these images at the summit as a way of
kickstarting the discussion. Let's look at those here as well, since it's a lot easier to demonstrate the
concept than it is to explain it in the abstract.

I built the free software map in Figure 3.1 by picking out key messages from the Free Software
Foundation (FSF) web site, http://www.fsf.org/. I also added a few things (the darker ovals in the
lower right quadrant of the picture) to show common misconceptions that were typically applied to
free software. This figure, and the others in this chapter are slightly edited versions of slides used at
the summit.

page 30

http://www.fsf.org/

Peer to Peer: Harnessing the Power of Disruptive Technologies

Figure 3.1. Map of the old free software meme

Free Software Meme Map
GG+ GHU Emors Linux The GPL
GHOME The GIMP GhostSrigd
| |
: ; Strategic Position
I&%ﬂﬁﬂ,ﬁﬂmﬁm — GHU's nat Uni. I||||uu’rh;~?ui|iir|\gu complete replacement —
o ogaing w, for 1he Uni openafing system,
User Positioning:
Freedom 1o nun Froe softwore is o maral issue.
the progrom.
Core Compatendes:
« We have the best hockers.
R R « Infarmation wanks 1o be free.
the sousce code, 1
Coplelt creale: o cesse that Sofhwre thould
menr; ol destvaifoe works Free speesh nod free bues oo Ly
'l hl'.leleu;ﬁnmdn-s. have oumess.
Freadam to redetribute Freadam o improve e E
the: seanoe cede o help programs ond redistribuee e hj,lﬂ"e right fo
yaour neighbar o imprvemenls L

Please note that this diagram should not be taken as a complete representation of the beliefs of the
Free Software Foundation. I simply summarized my interpretation of the attitudes and positioning I
found on their web site. No one from the Free Software Foundation has reviewed this figure, and they
might well highlight very different points if given the chance to do so.

There are a couple of things to note about the diagram. The ovals at the top represent the outward face
of the movement - the projects or activities that the movement considers canonical in defining itself.
In the case of the Free Software Foundation, these are programs like gcc (the GNU C Compiler), GNU
Emacs, GhostScript (a free PostScript display tool), and the GNU General Public License, or GPL.

The box in the center lists the strategic positioning, the key perceived user benefit, and the core
competencies. The strategic goal I chose came right up front on the Free Software Foundation web
site: to build a complete free replacement for the Unix operating system. The user benefit is sold as
one of standing up for what's right, even if there would be practical benefits in compromising. The web
site shows little sense of what the core competencies of the free software movement might be, other
than that they have right on their side, along with the goodwill of talented programmers.

In the Beam models, the ovals at the bottom of the picture represent internal activities of the business;
for my purposes, I used them to represent guiding principles and key messages. I used dark ovals to
represent undesirable messages that others might be creating and applying to the subject of the meme
map.

As you can see, the primary messages of the free software movement, thought-provoking and well
articulated as they are, don't address the negative public perceptions that are spread by opponents of
the movement.

Now take a look at the diagram I drew for open source - the alternative term for free software that was
invented shortly before we held our open source summit in April 1998. The content of this diagram,
shown in Figure 3.2, was taken partly from the Open Source Initiative web site
http://www.opensource.org/, but also from the discussions at the summit and from my own thinking
and speaking about open source in the years since. Take the time to read the diagram carefully; it
should be fairly self-explanatory, but I'll offer some insights into a few subtleties. The figure
demonstrates what a well-formed strategic meme map ought to look like.

page 31

http://www.opensource.org/

Peer to Peer: Harnessing the Power of Disruptive Technologies

Figure 3.2. Map of the new open source meme

Open Source Meme Map
"mﬂ'*.ﬂ Wimays:; more relioble than : the |sterset's Moailla: the weh browsar
il o tlgm“a':r"gmm Windows. et wib server. rlumsk its g souree mok
Sendmeil; routes almast o GAILL: the opan ssure Perl: the duct sape of the
Infeamed amail, programme’s toolset. Infemel.
| |
ShuleT Flﬂhﬂlli
“etwark-enobled collabaration makes for better safiwore.”
User Positioning:
You cortrol your own destiny.
Core Compelendies:
The Open Sowrce Defiaition: » Understanding Infernet-ero software development Peer sevlewt: gma-e
meny Hcesses com mee| these — methodologies, ?:hﬂi all by
core ilesia = Organizing and menoging developer communifies. s 1o lig ’“m"ﬁ'
«lsing I'r:lze wde dlleh-uhun hudgmn rﬂurl:elshurT
i = Commeaditizing merkels o wndercut dominonl players.
Fm'ﬂmﬂﬂfﬂs L — building, morkefing, and distribution. y u%ﬂéﬁlmmm
increnses comspetifion e davelopment heSer tham athers.
T e e daend
e Internet infrastruciuee depends on open source. :
el mattes: Halay ksirbug «fou can moke money even wﬁen you give awny the soffware, ﬁmﬂir:&“;j&tm}l
and Bed Hof Linwe necerssanly betier of firsd, bat
don't Bel ogaind Bem
Mhedular &scumeniasion: man The Clue | hi fal Interaofiosal parfcipssion el
e howta's for every mllnamr:nn'shuq o ::m;e the n:.-s; dm:un,i
sl Hel IMﬁpH Treat usannsculmwrrqem whesever they live ssd work.
under the
+ Sernlch your ows ifch: no
Speed of innovosion: releose Lower ovecheod and aost sharing Toals: 045, mailing lists, web !
early and e oflen meke sene {f“”"Ff"“m"m enobled-wide aren collsboration. mﬂ&::&?ﬁﬂ?:ﬁﬂﬂ

As you can see by comparing the two diagrams, they put a completely different spin on what formerly
might have been considered the same space. We did more than just change the name that we used to
describe a collection of projects from "free software" to "open source." In addition:

e We changed the canonical list of projects that we wanted to hold up as exemplars of the
movement. (Even though BIND and sendmail and Apache and Perl are "free software" by the
Free Software Foundation's definition, they aren't central to its free software "meme map" in
the way that we made them for open source; even today, they are not touted on the Free
Software Foundation web site.) What's more, I've included a tag line that explains why each
project is significant. For example, BIND isn't just another free software program; it's the
heart of the Domain Name System and the single most mission-critical program on the
Internet. Apache is the dominant web server on the market, sendmail routes most Internet
email and Linux is more reliable than Windows. The Free Software Foundation's GNU tools
are still in the picture, but they are no longer at its heart.

e The strategic positioning is much clearer. Open source is not about creating a free
replacement for Unix. It's about making better software through sharing source code and
using the Internet for collaboration. The user positioning (the benefit to the user) was best
articulated by Bob Young of Red Hat, who insisted that what Red Hat Linux offers to its
customers is control over their own destiny.

e The list of core competencies is much more focused and actionable. The most successful open
source communities do in fact understand something about distributed software development
in the age of the Internet, organizing developer communities, using free distribution to gain
market share, commoditizing markets to undercut dominant players, and creating powerful
brands for their software. Any aspiring open source player needs to be good at all of these
things.

page 32

Peer to Peer: Harnessing the Power of Disruptive Technologies

We've replaced the negative messages used against free software with directly competing
messages that counter them. For instance, where free software was mischaracterized as
unreliable, we set out very explicitly to demonstrate that everyone counts on open source
programs, and that the peer review process actually improves reliability and support.

We've identified a set of guiding principles that can be used by open source projects and
companies to see if they're hitting all the key points, or that can be used to explain why some
projects have failed to gain as much traction as expected. For example, Mozilla's initial lack of
modular code, weak documentation, and long release cycles hampered its quick uptake as an
open source project. (That being said, key portions of Mozilla code are finally starting to
appear in a variety of other open source projects, such as ActiveState's Komodo development
environment and Eazel's Nautilus file manager.)

We made connections between open source and related concepts that help to place it in
context. For example, the concept from The ClueTrain Manifesto of open interaction with
customers, and the idea of " disruptive technologies" from Clayton Christenson's book The
Innovator's Dilemma, link open source to trends in business management.

While some further discussion of the open source meme map might be worthwhile in another context,
I present it here mainly to clarify the use of meme maps to create a single unifying vision of a set of

related technologies.

3.1.2 The current peer-to-peer meme map

The meme map for peer-to-peer is still very unformed, and consists largely of ideas applied by the

media and other outsiders.

Figure 3.3 is the slide I showed to the group at the summit. Things have evolved somewhat since that
time, partly as a result of efforts such as ours to correct common misconceptions, but this picture still
represents the view being bandied about by industries that feel threatened by peer-to-peer

technologies.

Figure 3.3. Map of currently circulating peer-to-peer meme

File sharing is the key oppliotion. —

Current Peer to Peer Meme Map
Hapster Freznet
? 1 ?
| |
Strategic Positioning:

Paes-lo-pear matns thal ndellechunl property & na longer
under centralized contral,

User Positioning:
Free musc.

Core Competencies:
= Superdishibution: every new dienl also means a new server.
® o centralized contral: ance the col's ut of the bag, il's
ord bo put back in.
-imnTrrl and untraceahiline: pratect users from
cantralized contral,

=]

Peer to Peer: Harnessing the Power of Disruptive Technologies

Not a pretty picture. The canonical projects all feed the idea that peer-to-peer is about the subversion
of intellectual property. The chief benefit presented to users is that of free music (or other copyrighted
material). The core competencies of peer-to-peer projects are assumed to be superdistribution, the
lack of any central control point, and anonymity as a tool to protect the system from attempts at
control.

Clearly, these are characteristics of the systems that put the peer-to-peer buzzword onto everyone's
radar. But are they really the key points? Will they help peer-to-peer developers work together,
identify problems, develop new technologies, and win the public over to those technologies?

A map is useful only to the extent that it reflects underlying reality. A bad map gets you lost; a good
one helps you find your way through unfamiliar territory. Therefore, one major goal for the summit
was to develop a better map for the uncharted peer-to-peer space.

3.1.3 The new peer-to-peer meme map

In a space as vaguely defined as peer-to-peer, we need to consider many angles at once in order to
come up with an accurate picture of what the technology is and what is possible. Our summit looked at
many projects from different sources, often apparently unrelated. We spent a few hours brainstorming
about important applications of peer-to-peer technology, key principles, and so on. I've tried to
capture the results of that brainstorming session in the same form that I used to spark the discussion,
as the meme map in Figure 3.4. Note that this is what I took away personally from the meeting. The
actual map below wasn't fully developed or approved there.

Figure 3.4. Map of peer-to-peer meme as it is starting to be understood

New Peer to Peer Meme Mop
Hapetar, Gautelln, sad Freanst Insfant Mesoging: presence Hetwarkad Devices: the only ‘Weh Servites: serves-fo-semver
m&ﬁdmumslrirg rmnuﬁdml ix 1 orilicel iy fo Bave o killion g el more
and anehing. ness loal, tevices nlercomned. powerful applicetion:.
th mh.1 i :ﬁ"ﬂ"m (pen Sourte: Be formafioa of IP Rauting: pesr-1o-peer |ong Web hyperlinki
rough @ nedwork of poer-lo-pear) EREpE Distribasted (o iom the inking: Amy sile con
servers; alhiduals af endporsls o hoc paee-o- et sulPunre secngrized & the solslion b ootk really m;‘mm fink Ty ot etheat
appeal Jo conse directly, developmen workgrougs, stalabillly probles, irpermedigrias,

|

|
|— Strutegic Positioning:
The nahural nex! stap. af.e‘m huiding an operating system For
the Intermal.

User Positioning:
Your comguber is way mare copable than you think.

Core Competencies:
» Metadota Manogement:
* Mannging od rmimmd roling.
sparch,

A& TanWay Medium: the user's - Sefvice discovery o

maching is both diest and serves Tha srluion fo the 1T botlleneck.

- Marketing your namespoce o leveraging on exisling ane.
* Senmiess communicofion and conneclivily,
: y # Making i eosy: zern adminisirafion for self-onganizing syshems .
Hasep i1 simple: porticpatien { » Sequrify; managing frust ond expectations, —‘ More effedtive use of Infereet

should be o3 o 1o sutomatic resoorces through
r: poesible | \ “dge senvines.”
L Devesomes the barriers 1o the
Hemlpusymﬁp.h&mim *Peaople ore the Pin PZR° farmation of od hee commusities
/ and winrking qroeps \
0 Qe s |5 om el yiew Decenirlizntion osd user
Dol peayle, deta, nd Toberatee unvefinbility: peers come renipeddbenid oty 3 ™
mpowerment eaable grestes
Qn‘.ret:q{ruq:eﬂklnrﬂms. sl o out of the setwark. poe-o-peer naure of e el preduntvity,

A quick walkthrough of the various projects and how they fit together leads us to a new understanding
of the strategic positioning and core competencies for peer-to-peer projects. In the course of this
walkthrough, I'll also talk about some of the guiding principles that we can derive from studying each
project, which are captured in the ovals at the top of the diagram. This discussion is necessarily quite
superficial, but suggests directions for further study.

page 34

Peer to Peer: Harnessing the Power of Disruptive Technologies

3.1.3.1 File sharing: Napster and successors

One of the most obvious things about the map I've drawn of the peer-to-peer space is that file-sharing
applications such as Napster, Gnutella, and Freenet are only a small part of the picture, even though
they have received the lion's share of the attention to date. Nonetheless, Napster
(http://www.napster.com/), as the application whose rapid uptake and enormous impact on the
music industry sparked the furor over peer-to-peer, deserves some significant discussion.

One of the most interesting things about Napster is that it's not a pure peer-to-peer system in the
same way that radically decentralized systems like Gnutella and Freenet are. While the Napster data is
distributed across millions of hard disks, finding that data depends on a central server. In some ways,
the difference between MP3.com and Napster is smaller than it appears: one centralizes the files,
while the other centralizes the addresses of the files.

The real genius of Napster is the way it makes participation automatic. By default, any consumer is
also a producer of files for the network. Once you download a file, your machine is available to pass
along the file to other users. Automatic "pass along" participation decentralizes file storage and
network bandwidth, but most importantly, it also distributes the job of building the Napster song
database.

Dan Bricklin has written an excellent essay on this subject, which we've printed in this book as
Chapter 4. In this wonderful reversal of Hardin's tragedy of the commons, Bricklin explains why
Napster demonstrates the power of collectively assembled databases in which "increasing the value of
the database by adding more information is a natural by-product of using the tool for your own
benefit."

This feature is also captured by an insightful comment by innovative software developer Dave Winer:
"The P in P2P is People."

Dave's comment highlights why the connection to the open source movement is significant. Open
source projects are self-organizing, decentralized workgroups enabled by peer-to-peer Internet
technologies. If the P in P2P is people, the technologies that allow people to create self-organizing
communities and the frameworks developed for managing those communities provide important
lessons for those who want to work in the P2P space.

Open source isn't driven just by a set of licenses for software distribution, but more deeply by a set of
techniques for collaborative, wide-area software development. Open source and peer-to-peer come
full circle here. One of the key drivers of the early open source community was the peer-to-peer
Usenet, which I'll discuss later in the chapter. Both open source and peer-to-peer are technologies that
allow people to associate freely, end-to-end, and thus are great levelers and great hotbeds promoting
innovation.

Napster also illustrates another guiding principle: tolerance for redundancy and unreliability. I was
talking recently with Eric Schmidt, CEO of Novell, about lessons from peer-to-peer. He remarked on a
conversation he'd had with his 13-year-old daughter. "Does it bother you," he asked, "that sometimes
songs are there, and sometimes they aren't? Does it bother you that there are lots of copies of the same
song, and that they aren't all the same?" Her answer - that neither of these things bothered her in the
slightest - seemed to him to illustrate the gulf between the traditional computer scientist's concern for
reliability and orthogonality and the user's indifference for these issues.

Another important lesson from Napster is that free riders, "super peers" providing more or better
resources, and other variations in peer participation will ultimately decrease the system's
decentralization. Experience is already showing that a hierarchy is starting to emerge. Some users turn
off file sharing. Even among those who don't, some have more files, and some have better bandwidth.
As in Orwell's Animal Farm, all animals are equal, but some are more equal than others. While this
idea is anathema to those wedded to the theory of radical decentralization, in practice, it is this very
feature that gives rise to many of the business opportunities in the peer-to-peer space. It should give
great relief to those who fear that peer-to-peer will lead to the leveling of all hierarchy and the end of
industries that depend on it. The most effective way for the music industry to fight what they fear from
Napster is to join the trend, and provide sites that become the best source for high-quality music
downloads.

page 35

http://www.napster.com/

Peer to Peer: Harnessing the Power of Disruptive Technologies

Even on Gnutella, the concept of super peers is starting to emerge. The service DSS (Distributed
Search Solutions) from Clip2.com, Inc. (http://dss.clip2.com/) has developed a program that they call
a Gnutella " Reflector." This is a proxy and index server designed to make Gnutella more scalable.
According to Kelly Truelove of Clip2, "Multiple users connect to such a Reflector as they might
connect to a Napster central server, yet, unlike such a central server, the Reflector itself can function
as a peer, making outgoing connections to other peers on the network."

3.1.3.2 Mixing centralization and decentralization: Usenet, email, and IP routing

Not coincidentally, this evolution from a pure peer-to-peer network to one in which peer-to-peer and
centralized architectures overlap echoes the evolution of Usenet. This history also shows that peer-to-
peer and client/server (which can also be called decentralization and centralization) are not mutually
exclusive.

Usenet was originally carried over the informal, peer-to-peer, dial-up network known as UUCPnet.
Sites agreed to phone each other, and passed mail and news from site to site in a store-and-forward
network. Over time, though, it became clear that some sites were better connected than others; they
came to form a kind of de facto "Usenet backbone." One of the chief sites, seismo, a computer at the
U.S. Geological Society, was run by Rick Adams. By 1987, the load on seismo had become so great that
Rick formed a separate company, called UUnet (http://www.uu.net/), to provide connectivity services
for a monthly fee.

As the UUCPnet was replaced by the newly commercialized Internet, UUnet added TCP/IP services
and became the first commercial Internet service provider. ISPs create a layer of hierarchy and
centralization even though the IP routing infrastructure of the Internet is still peer-to-peer. Internet
routers act as peers in finding the best route from one point on the Net to another, but users don't find
each other directly any more. They get their Internet connectivity from ISPs, who in turn connect to
each other in asymmetric hierarchies that are hidden from the end user. Yet beneath the surface, each
of those ISPs still depends on the same peer-to-peer architecture.

Similarly, email is routed by a network of peered mail servers, and while it appears peer-to-peer from
the user point of view, those users are in fact aggregated into clusters by the servers that route their
mail and the organizations that operate those servers.

Centralization and decentralization are never so clearly separable as anyone fixated on buzzwords
might like.

3.1.3.3 Maximizing use of far-flung resources: Distributed computation

Some of the earliest projects that excited the public about the potential for coordinating peers were
distributed computation programs like SETI@home. This project is described by one of its founders in
Chapter 5. Served from the Space Sciences Lab at U.C. Berkeley, SETI@home runs as a screensaver
that uses the "spare cycles" from more than 1 million PCs to process radio telescope data in search of
signs of extraterrestrial intelligence.

Viewed from one angle, distributed computation programs are not at all peer-to-peer. After all, they
use an old-style, asymmetric, client/server architecture, in which the million independent
computational clients download their data sets and upload their computed results to the central
repository at the Space Sciences Lab. The clients don't peer with each other in any way.

But look a little deeper, and something else emerges: the clients are active participants, not just
passive "browsers." What's more, the project uses the massive redundancy of computing resources to
work around problems such as reliability and network availability of any one resource.

But even more importantly, look further down the development timeline when startups such as
United Devices, Popular Power, Parabon, and others have their services in the market. At that point,
the "ecology" of distributed computation is going to be much more complex. There will be thousands
(and ultimately, perhaps millions) of compute-intensive tasks looking for spare cycles. At what point
does it make sense to design a specialized architecture that facilitates a two-way flow of tasks and
compute cycles?

Further, many of the key principles of Napster are also at play in distributed computation. Both

Napster and SETI@home need to create and manage metadata about a large community of
distributed participants. Both need to make it incredibly simple to participate.

page 36

http://dss.clip2.com/
http://www.uu.net/

Peer to Peer: Harnessing the Power of Disruptive Technologies

Finally, both Napster and SETI@Home have tried to exploit what Clay Shirky (who contributed
Chapter 2, to this book) memorably called "the dark matter of the Internet" - the hundreds of millions
of interconnected PCs that have hitherto been largely passive participants in the network.

Already, startups like Mojo Nation (http://www.mojonation.net/) are making a link between file
sharing and distributed computation. In the end, both distributed file sharing and distributed
computation are aspects of a new world where individual computer systems take on their most
important role as part of a network - where the whole is much greater than the sum of its parts.

3.1.3.4 Immediate information sharing: The new instant messaging services

Napster could be characterized as a "brokered peer-to-peer system," in which a central addressing
authority connects end points, and then gets out of the way.

Once you realize this, it becomes clear just how similar the Napster model is to instant messaging. In
each case, a central authority manages an addressing system and a namespace that allows the unique
identification of each user. These are employed by the system to connect end users. In some ways,
Napster can be thought of as an instant messaging system in which the question isn't, "Are you online
and do you want to chat?" but, "Are you online and do you have this song?"

Not surprisingly, a project like AlMster (http://www.aimster.com/) makes explicit use of this insight
to build a file-sharing network that uses the AOL Instant Messenger (AIM) protocol. This brings IM
features such as buddy lists into the file- sharing arena.

The Jabber instant messaging platform (http://www.jabbercentral.com/) takes things even further.
An open source project, Jabber started out as a switching system between incompatible instant
messaging protocols; it is evolving into a general XML routing system and a basis for applications that
allow users and their computers to ask each other even more interesting questions.

Ray Ozzie's Groove Networks (http://www.groove.net/) is an even more mature expression of the
same insight. It provides a kind of groupware dial tone or "LAN on demand" for ad hoc groups of
peers. Like Jabber, it provides an XML routing infrastructure that allows for the formation of ad hoc
peer groups. These can share not only files and chat, but a wide variety of applications. Replication,
security, and so on are taken care of automatically by the underlying Groove system.

If systems like AIMster, Jabber, and Groove deliver what they promise, we can see peer-to-peer as a
solution to the IT bottleneck, allowing users to interact more directly with each other in networks that
can span organizational boundaries. Beyond the potential efficiency of such networks, peer-to-peer
systems can help people share ideas and viewpoints more easily, ultimately helping the formation of
online communities.

3.1.3.5 The writable Web

The Web started out as a participatory groupware system. It was originally designed by Tim Berners-
Lee as a way for high-energy physicists to share their research data and conclusions. Only later was it
recast into a publishing medium, in which sites seek to produce content that attracts millions of
passive consumers.

To this day, there is a strong peer-to-peer element at the very heart of the Web's architecture: the
hyperlink. A web hyperlink can point to any other site on the network, without any central
intervention, and without the permission of the site being pointed to. What's more, hyperlinks can
point to a variety of resources, not just web pages. Part of the Web's explosive growth, as compared to
other early Internet information services, was that the web browser became a kind of universal client
that was able to link to any kind of Internet resource. Initially, these resources were competing
services such as FTP, Gopher, and WAIS. But eventually, through CGI, the Web became an interface
to virtually any information resource that anyone wanted to make available. Mailto and news links
even provide gateways to mail and Usenet.

There's still a fundamental flaw in the Web as it has been deployed, though. Tim Berners-Lee created
both a web server and a web browser, but he didn't join them at the hip the way Napster did. And as
the Buddhist Dhammapadda says, "If the gap between heaven and earth is as wide as a barleycorn, it
is as wide as all heaven and earth." Before long, the asymmetry between clients and servers had grown
wide enough to drive a truck through.

page 37

http://www.mojonation.net/
http://www.aimster.com/
http://www.jabbercentral.com/
http://www.groove.net/

Peer to Peer: Harnessing the Power of Disruptive Technologies

Browsers were made freely available to anyone who wanted to download one, but servers were seen as
a high-priced revenue opportunity, and were far less widely deployed. There were free Unix servers
available (including the NCSA server, which eventually morphed into Apache), but by 1995, 95% of
Web users were on Windows, and there was no web server at all available to them! In 1995, in an
attempt to turn the tide, O'Reilly introduced Website. The first web server for Windows, it tried to
push the market forward with the slogan "Everyone who has a web browser ought to have a web
server." But by then, the market was fixated on the idea of the web server as a centralized publishing
tool. Microsoft eventually offered PWS, or Personal Web Server, bundled with Windows, but it was
clearly a low-powered, second-class offering.

Perhaps even more importantly, as several authors in this book point out, the rise of dynamic IP
addressing made it increasingly difficult for individuals to publish to the Web from their desktops. As
a result, the original "Two-Way Web" became something closer to television, a medium in which most
of the participants are consumers, and only a relatively small number are producers.

Web site hosting services and participatory sites like GeoCities made it somewhat easier to participate,
but these services were outside the mainstream of web development, with a consumer positioning and
nonstandard tools.

Recently, there's been a new emphasis on the "writable Web," with projects like Dave Winer's
EditThisPage.Com (http://www.editthispage.com/), Dan Bricklin's Trellix (http://www.trellix.com/),
and Pyra's Blogger (http://www.blogger.com/) making it easy for anyone to host their own site and
discussion area. Wiki (http://c2.com/cgi/wiki?WikiWikiWeb) is an even more extreme innovation,
creating web sites that are writable by anyone in an area set aside for public comment on a given topic.
Wiki has actually been around for about six or seven years, but has suddenly started to catch on.

The writable Web is only one way that the Web is recapturing its peer-to-peer roots. Content
syndication with Rich Site Summary (RSS), which I'll describe in the following section, and web
services built with protocols like XML-RPC and SOAP allow sites to reference each other more fully
than is possible with a hyperlink alone.

3.1.3.6 Web services and content syndication

I asked above, "At what point does it make sense to have an architecture that allows a two-way flow of
tasks and compute cycles?" That's actually a pretty good description of SOAP and other web services
architectures.

The contribution of SOAP is to formalize something that sophisticated programmers have been doing
for years. It's been relatively easy, using Perl and a library like libwww-perl, to build interfaces to web
sites that do "screen scraping” and then reformulate and reuse the data in ways that the original web
developers didn't intend. Jon Udell (co-author of Chapter 18) demonstrated that one could even take
data from one web site and pass it to another for further processing, in a web equivalent to the Unix
pipeline.

SOAP makes this process more explicit, turning web sites into peers that can provide more complex
services than simple CGI forms to their users. The next generation of web applications won't consist of
single-point conversations between a single server and a single browser, but a multipoint conversation
between cooperating programs.

One of the key issues that comes up, once you start thinking about more complex interactions between
sites on the Net, is that metadata management is critical. In order for web clients and servers to use
others as resources, they need a standard way to discover each other, the way Java-enabled devices
discover each other through Jini. An initiative called Universal Description, Discovery, and
Integration, or UDDI (http://www.uddi.org/) represents a first step in this direction.

Similarly, content syndication formats like RSS allow web sites to cooperate in delivering content. By
publishing RSS feeds, sites enable other sites to automatically pick up data about their stories. For
instance, the O'Reilly Network home page is updated automatically out of a set of RSS news feeds
from a web of cooperating sites.

Right now, RSS provides only the simplest of metadata about web pages, useful for simple syndication

applications like creating news digest pages. But the RSS 1.0 proposal (www.xml.com/pub/r/810) will
allow for more complex applications based on distributed data.

page 38

http://www.editthispage.com/
http://www.trellix.com/
http://www.blogger.com/
http://c2.com/cgi/wiki?WikiWikiWeb
http://www.uddi.org/

Peer to Peer: Harnessing the Power of Disruptive Technologies

3.1.3.7 Peer-to-peer and devices

We've all heard popular descriptions of technologies such as BlueTooth and Jini. I walk into a room
with my wireless laptop, and it queries other devices: "Hey, are there any printers here that can print a
PostScript file?"

If this isn't peer-to-peer, what is? As we have billions of computing devices, some fixed, some mobile,
some embedded in a variety of appliances (even in our clothing), we'll need technologies that allow the
formation of ad hoc peer groups between devices.

As you look at these technologies, you see a great deal of overlap between the kinds of problems that
need to be solved for peer-to-peer devices and for peer-to-peer network applications ranging from web
services to file sharing. Key technologies include resource discovery, reliability through redundancy,
synchronization, and replication.

3.1.4 Strategic positioning and core competencies

The whirlwind tour of canonical projects we've just been through weaves a story about peer-to-peer
that's very different from the one we started with. Not only is peer-to-peer fundamental to the
architecture of the existing Internet, but it is showing us important directions in the future evolution
of the Net. In some ways, you can argue that the Net is reaching a kind of critical mass, in which the
network itself is the platform, more important than the operating system running on the individual
nodes.

Sun first articulated this vision many years ago with the slogan "The Network is the Computer," but
that slogan is only now coming true. And if the network is the computer, the projects under the peer-
to-peer umbrella are collectively involved in defining the operating system for that emergent global
computer.

That positioning guides technology developers. But there is a story for users too: you and your
computer are more powerful than you think. In the peer-to-peer vision of the global network, a PC and
its users aren't just passive consumers of data created at other central sites.

Since the most promising peer-to-peer applications of the near future are only beginning to be
developed, it's crucial to provide a vision of the core competencies that peer-to-peer projects will need
to bring to the table.

High on the list is metadata management, which is the subject of Chapter 13. Whether you're dealing
with networked devices, file sharing, distributed computation, or web services, users need to find each
other and what they offer. While we don't have a clear winner in the resource discovery area, XML has
emerged as an important component in the puzzle.

What do we mean by metadata? In the case of Napster, metadata means the combination of artist and
song names that users search for. It also includes additional data managed by the central Napster
server, such as the names and Internet addresses of users, the size of the music files, and the reported
amount of bandwidth of the user's Internet link. (You can think of this information as the Napster
"namespace," a privately-managed metadata directory that gives Napster the ability to link users and
their files with each other.)

In considering Napster, it's worth noting that it chose an easy information domain because the
"namespace" of popular music is simple and well-known. The Napster model breaks down in cases
where more complex metadata is required to find a given piece of data. For example, in the case of
classical music, an artist/song combination is often insufficient, since the same piece may be
performed by various combinations of artists.

A related observation, which Darren New of Invisible Worlds (http://www.invisible.net/) made at the
summit, is that Napster depends on the music industry itself to "market its namespace.” Without
preexisting knowledge of song titles and artists, there is nothing for the Napster user to search for.
This will lead to additional centralization layers as unknown artists try to provide additional
information to help users find their work. This is much the same thing that happened on the Web, as a
class of portals such as Yahoo! grew up to categorize and market information about the peer-to-peer
world of hyperlinked web pages.

page 39

http://www.invisible.net/

Peer to Peer: Harnessing the Power of Disruptive Technologies

It's easy to see, then, how understanding and managing namespaces and other forms of metadata
becomes central to peer-to-peer applications. What's more, it is also the key to many peer-to-peer
business models. Controlling namespaces and resource discovery has turned out to be one of the key
battlegrounds of the Web. From Network Solutions (which largely controls DNS registration) to
Yahoo! and search engines, identifying and capitalizing on the ways that centralization impacts even
radically decentralized systems has turned out to be one key to financial success.

Instant messaging turns out to tell a similar story. The namespace of an instant messaging system,
and the mapping of identity onto user addresses, is the key to those systems. You have only to witness
the efforts of AOL to keep other instant messaging vendors from reaching its customers to understand
just how important this is.

Note, however, that in the end, an open namespace with multiple providers will create a more
powerful network than a closed one, just as the open Web trumped closed information services like
AOL and MSN. AOL now succeeds for its customers as a "first among equals" rather than as a
completely closed system.

In the case of a distributed computation application, metadata might mean some identifier that allows
the distributed data elements to be reassembled, and the address of the user who is working on a
particular segment. SETI@home tracks user identity as a way of providing a game-like environment in
which users and companies compete to contribute the most cycles. Startups aiming to compensate
users for their spare compute cycles will need to track how much is contributed. Depending on the
type of problem to be computed, they might want to know more about the resources being offered,
such as the speed of the computer, the amount of available memory, and the bandwidth of the
connection. Some of the technical means used to track and reward users are explored in Chapter 16.

We can see, then, that some of the key battlegrounds for peer-to-peer as a business proposition will be
the standards for metadata, the protocols for describing and discovering network-based resources and
services, and ownership of the namespaces that are used to identify those resources.

Returning to Napster, though, it's also clear that the core competencies required of successful peer-to-
peer projects will include seamless communication and connectivity, facilities that support self-
organizing systems, and the management of trust and expectations.

Ultimately, peer-to-peer is about overcoming the barriers to the formation of ad hoc communities,
whether of people, of programs, of devices, or of distributed resources. It's about decoupling people,
data, and services from specific machines, using redundancy to replace reliability of connections as
the key to consistency. If we get it right, peer-to-peer can help to break the IT bottleneck that comes
with centralized services. Decentralization and user empowerment enable greater productivity. Edge
services allow more effective use of Internet resources.

We're just at the beginning of a process of discovery. To get this right, we'll need a lot of
experimentation. But if we can learn lessons from Internet history, we also need to remember to focus
on the interoperability of many systems, rather than treating this as a winner-takes-all game in which
a single vendor can establish the standard for the network platform.

The peer-to-peer landscape is changing daily. New companies, applications, and projects appear faster
than they can be catalogued. Especially with all the hype around peer-to-peer, the connections
between these projects can be fairly tenuous. Is it marketing buzz or substance, when everyone tries to
join the parade?

While there's a danger in casting the net too widely, there's also a danger in limiting it. I believe that
the story I've told here gives us a good starting point in understanding an emergent phenomenon: the
kind of computing that results when networking is pervasive, resources are abundant (and
redundant), and the barriers are low to equal participation by any individual network node.

page 40

Peer to Peer: Harnessing the Power of Disruptive Technologies

Chapter 4. The Cornucopia of the Commons

Dan Bricklin, Cocreator of Visicalc

Let's get to the bottom of the Napster phenomenon - why is this music trading service so popular? One
could say, trivially, that Napster is successful because you can find what you want (a particular song)
and get it easily. It's also pretty obvious that songs are easy to find because so many of them are
available through Napster. If Napster let me get only a few popular songs, once I downloaded those I'd
lose interest fast.

But what's the root cause? Why are so many songs available? Hint: It has nothing to do with peer-to-
peer. Peer-to-peer is plumbing, and most people don't care about plumbing. While the "look into other
people's computers and copy directly” method has some psychological benefit to people who
understand what's going on (as indicated by thinkers such as Tom Matrullo and Dave Winer), I think
the peer-to-peer aspects actually get in the way of Napster.

Let's be blunt: Napster would operate much better if, when you logged in, it uploaded all the songs
from your disk that weren't already in the Napster database. If the songs were copied to a master
server, rather than just the names of the songs and who was currently logged in, the same songs would
be available for download provided by the same people, but at all times (not just when the "owner"
happened to be connected to the Internet), and probably through more reliable and higher-speed
connections to the Internet. (Akamai provides the kind of redundancy and efficiency that Napster
currently relies on its worldwide network of users to provide.) Napster could at least maintain the list
of who has what songs better than they do now.

Napster doesn't work this way partly because peer-to-peer may be more legal (or so they argue) and
harder to litigate against. But other applications may not have Napster's legal problems and would
therefore benefit from more centralized servers. While I'm a strong proponent for peer-to-peer for
some things, I don't think architecture is the main issue driving new services.

The issue is whether you get what you want from the application: "Is the data I want in the database?"
What's interesting about Napster is where its data ultimately comes from - the users - not when or
how it's transferred. So in this chapter, I'm going to examine how a service can fill a database with lots
of whatever people want.

4.1 Ways to fill shared databases

There are three common ways to fill a shared database: organized manual, organized mechanical,
and volunteer manual.

The classic case of an organized manual database is the original Yahoo! directory. This database was
filled by organizing an army of people to put in data manually. Another example is the old legal
databases where armies of typists were paid to retype printed material into computers.

The original AltaVista is an example of an organized mechanical database. A program running on
powerful computers followed links and domain names and spidered the Web, saving the information
as it went. Many databases on the Web today are mechanically created by getting access to somebody
else's data, sometimes for a fee. Examples include databases of street maps and the status of airline
flights. Some of those databases are by-products of automated processes.

Finally, Usenet newsgroups and threaded discussions like Slashdot are examples of volunteer
databases, where interested individuals provide the data because they feel passionate enough about
doing so. Amazon.com's well-known reviews are created through a mixture of organized manual and
volunteer manual techniques: the company recruits some reviews and readers spontaneously put up
others.

page 41

Peer to Peer: Harnessing the Power of Disruptive Technologies

4.1.1 CDDB: A case study in how to get a manually created database

The most interesting databases (for the purposes of this chapter) are the ones that involve manual
creation. When we look closely at some of them, we find some very clever techniques for getting data
that are very specific to the subjects they cover and the users they serve. Let's focus on one service that
employs a very unusual technique to aggregate its data: the CDDB service offered by Gracenote to
organize information about music CDs (http://www.cddb.com/).

The CDDB database has information that allows your computer to identify a particular music CD in
the CD drive and list its album title and track titles. Their service is used by RealJukebox,
MusicMatch, Winamp, and others. What's interesting is how they accumulate this information that so
many users rely on without even thinking about it.

Most CDs do not store title information. The only information on the CD, aside from the audio tracks
themselves, is the number of tracks (songs) and the length of each one. This is the information your
CD player displays. What CDDB does is let the software on your PC take that track information, send a
CD signature to CDDB through Internet protocols (if you're connected), and get back the titles.

CDDB works because songs are of relatively random length. The chances are good almost all albums
are unique. To understand this point, figure there are about 10 songs on an album, and that they each
run from about a minute and a half to about three and a half minutes in length. The times for each
song therefore vary by 100 seconds. There are 100 x 100 X ... x 100 = 100° = 10* = 100 billion = an
awful lot of possible combinations. So an album is identified by a signature that is a special arithmetic
combination of the times of all the tracks.

You'd figure that CDDB just bought a standard database with all the times and titles. Well, there
wasn't one. What they did was accept postings over the Internet that contained track timing
information and titles typed in by volunteers. Software for playing music CDs on personal computers
was developed that let people type in that information if CDDB didn't have it. As people noticed that
their albums failed to come up with titles when they played them on their PCs, many cared enough to
type in the information. They benefited personally from typing the information because they could
then more easily make their own playlists, but in the process they happened also to update the shared
database. The database could be built even if only one person was willing to do this for each album
(even an obscure album).

If you loved your CD collection, you'd want all the albums represented - or at least some people did.
Some people are the type who like to be organized and label everything. Not everybody needed to be
this type, just enough people to fill the database. Also, the CDDB site needed this volunteer (user)
labor only until the database got big enough that it was valuable enough for other companies to pay
for access.

CDDB is not run on a peer-to-peer architecture. Their database is on dedicated servers that they
control. Their web site says:

CDDB is now a totally secure and reliable service which is provided to users
worldwide via a network of high availability, mirrored servers which each have
multiple, high bandwidth connections to the Internet... boasting a database of
nearly 620,000 album titles and over 7.5 million tracks.

So CDDB succeeded not through peer-to-peer networking - it succeeded by harnessing the energy of
its users.

4.1.2 Napster: Harnessing the power of personal selfishness

Napster is a manually created database built on work by volunteers. It gets bigger when one of its
users buys (or borrows) a copy of a CD, converts it to MP3, and stores it in his or her shared music
directory. It can also be enlarged when somebody creates an MP3 of their own performance that they
want to share. But Napster cleverly provides a short-circuit around the process of manually creating
data: In both cases, storing the copy in the shared music directory can be a natural by-product of the
user's normal work with the songs. It can be done as part of downloading songs to a portable music
player or burning a personal mix CD. Whenever the users are connected to the Internet and to the
Napster server, songs in the shared directory are then available to the world.

page 42

http://www.cddb.com/

Peer to Peer: Harnessing the Power of Disruptive Technologies

Of course, the user may not be connected to the Napster server all the time, so the song is not fully
available to all who want it (a perennial problem with peer-to-peer systems). However, Napster
overcomes this problem too, by exploiting the everyday activities of its users. Whenever someone
downloads a song using Napster and leaves the file in his or her shared music directory, that person is
increasing the number of Napster users who have that song, increasing the chances you will find
someone with the song logged in to Napster when you want your copy. So again, the value of the
database increases through normal use. (The same kind of replication is achieved in a more formal
way by Freenet through its unique protocol, but Napster gets the same effect more simply - its
protocol is just the decision of a user to do a download.)

The genius of Napster is that increasing the value of the database by adding more information is a
natural by-product of each person using the tool for his or her own benefit. No altruistic sharing
motives need be present, especially since sharing is the default. It isn't even like the old song about
"leaving a cup with water by the pump to let the next person have something to prime it with." (I'll
have to use Napster to find that song....) In other words, nobody has to think of being nice to the next
guy or put in even a tiny bit of extra effort.

As Internet analyst Kevin Werbach wrote in Release 1.0, a monthly report on technology trends:

What made Napster a threat to the record labels was its remarkable growth. That
growth resulted from two things: Napster's user experience and its focus on music...
What makes Napster different is that it's drop-dead simple to use. Its interface isn't
pretty, but it achieves that magic resonance with user expectations that marks the
most revolutionary software developments.

I would add that, in using that simple, desirable user interface, you also are adding to the value of the
database without doing any extra work. I'd like to suggest that one can predict the success of a
particular system for building a shared database by how much the database is aided through normal,
selfish use.

4.1.3 The commons

We've heard plenty about the tragedy of the commons - in fact, it pops up in several other chapters of
this book. In the 1968 essay that popularized the concept, "The Tragedy of the Commons," Garrett
Hardin wrote:

Therein is the tragedy. Each man is locked into a system that compels him to
increase his herd without limit - in a world that is limited. Ruin is the destination
toward which all men rush, each pursuing his own best interest in a society that
believes in the freedom of the commons. Freedom in a commons brings ruin to all.

In the case of certain ingeniously planned services, we find a contrasting cornucopia of the commons:
use brings overflowing abundance. Peer-to-peer architectures and technologies may have their
benefits, but I think the historical lesson is clear: concentrate on what you can get from users, and use
whatever protocol can maximize their voluntary contributions. That seems to be where the greatest
promise lies for the new kinds of collaborative environments.

page 43

Peer to Peer: Harnessing the Power of Disruptive Technologies

Part II: Projects

This part of the book offers a look at several current systems, giving a sense of what
actual peer-to-peer systems look like and how they behave.

page 44

Peer to Peer: Harnessing the Power of Disruptive Technologies

Chapter 5. SETI@home

David Anderson, SETI@home

It was January 1986, and I was sitting in a cafe on Berkeley, California's Telegraph Avenue. Looking
up, I recognized a student in the graduate course I was teaching that semester at the university. We
talked. His name was David Gedye, and he had just arrived from Australia. Our conversation revealed
many common interests, both within and outside of computer science. This chance meeting led,
twelve years later, to a project that may revolutionize computing and science: SETI@home.

Gedye and I became running partners. Our long forays into the hills above the Berkeley campus
occasioned many far-ranging discussions about the universe and our imperfect understanding of it. I
enjoyed these times. But all good things must end, and in 1989 Gedye left Berkeley with a master's
degree. He worked in Silicon Valley for a few years, then moved to Seattle and started a family. I also
left academia, but remained in the Bay Area.

In 1995 Gedye visited me in Berkeley, and we returned to the hills, this time for a leisurely walk. He
was bursting with excitement about a new idea. It sounded crazy at first: He proposed using the
computing power of home PCs to search for radio signals from extraterrestrial civilizations. But Gedye
was serious. He had contacted Woody Sullivan, an astronomy professor at the University of
Washington and an expert in the theory behind SETI, the Search for Extraterrestrial Intelligence.
Woody had steered him to Dan Werthimer, a SETI researcher at UC Berkeley.

The four of us - Gedye, Werthimer, Sullivan, and I - met several times over the next year, trying to
assess the viability of Gedye's idea. We decided that existing technology was sufficient, though just
barely, for recording radio data and distributing it over the Internet. And if we managed to get
100,000 people to participate, the aggregate computing power would let us search for fainter signals,
and more types of signals, than had ever been done before. But could we get that many people
interested? We decided to try it and find out.

5.1 Radio SETI

SETI is a scientific research area whose goal is to detect intelligent life outside the Earth. In 1959, Phil
Morrison and Giuseppe Cocconi proposed listening for signals with narrow frequency bandwidth, like
our own television and radar emissions, but unlike the noise emanating from stars and other natural
sources. Such signals would be evidence of technology, and therefore of life.

The first radio SETI experiment was conducted in 1960 by Frank Drake, who pointed an 85-foot radio
telescope in West Virginia at two nearby stars. Drake didn't detect an extraterrestrial signal, but he
and other researchers have continued to listen. Since 1960 there have been tremendous advances in
technology, especially in the digital technology at the heart of radio SETI. The systems that analyze
radio signals use the Fast Fourier Transform (FFT), an algorithm that divides signals into their
component frequencies. Most SETI projects have built special-purpose FFT supercomputers, but are
limited to fairly simple types of analysis.

There are also larger and more sensitive radio telescopes. The largest is Arecibo, a 1,000-foot
aluminum dish set into a natural hollow in the hills of northern Puerto Rico. A movable antenna
platform is suspended 700 feet above the center of the dish. By moving the antenna, one can
effectively point the telescope anywhere in a band of sky from the celestial equator to 38 degrees
north. The telescope doesn't form an image like optical telescopes. It's more like a highly directional
microphone. It sees a fuzzy disk (a beam) about 1/10 of a degree in diameter, or about 1/5 the
diameter of the moon.

Arecibo's size and excellent electronics let it hear very faint signals. The telescope is used for many

scientific purposes: looking for pulsars, imaging asteroids and planets by bouncing radio waves off
them, and studying the upper atmosphere. Observation time on Arecibo is a precious commodity.

page 45

Peer to Peer: Harnessing the Power of Disruptive Technologies

In 1992, Dan Werthimer devised a way for his SETI project, SERENDIP, to use Arecibo all the time -
even while other projects are using it. He mounted a secondary antenna at the opposite end of the
platform from the main antenna. While the main antenna tracks a fixed point in the sky (as it
normally does) this secondary antenna moves slowly in an arc about 6 degrees away. SERENDIP
observers have no control over where the scope points, but over long periods of time their beam covers
the entire band of sky visible from Arecibo. SERENDIP is thus a sky survey: It covers lots of stars but
doesn't spend much time on each star. Other radio SETT projects use targeted search: they look at
specific stars for longer periods, which gives them more sensitivity. No one knows which approach is
better, or even if radio signals are the right thing to look for. The best bet, SETI experts agree, is to try
everything.

5.2 How SETI@home works

We decided that SETI@home would use SERENDIP's antenna. Like all previous radio SETI projects,
SERENDIP analyzes its signal using a dedicated supercomputer at the telescope; it doesn't record the
signal. For SETI@home, we needed to digitally record the signal and transport it to our computers at
Berkeley. The network connection from Arecibo to the mainland is too slow. Instead, we record the
data on digital tapes and mail them to Berkeley. The largest-capacity digital tape available in 1998 was
the 35-GB digital linear tape (DLT).

We had to decide what frequency range to record. Covering a wide range is good from a scientific
point of view, but it means more tapes and more network bandwidth. We decided to record a 2.5 MHz
frequency band. Using 1-bit samples, this gives a data rate of 5 Mbps, meaning that a tape fills up in
about 16 hours. Like most radio SETI projects, we centered our band at the hydrogen line, 1.42 GHz.
This is the resonant frequency of the hydrogen molecules that fill interstellar space. Since hydrogen is
the most abundant element in the universe, we hope that if aliens are sending an intentional signal,
they will use this frequency. Our 2.5 MHz band is wide enough to contain Doppler shifts (frequency
shifts due to relative motion) corresponding to any likely velocity of a transmitter in our galaxy.

SETI@home and SERENDIP are complementary: SETI@home looks at a narrower frequency range
than SERENDIP (2.5 MHz versus 140 MHz) but does better signal analysis. SETI@home will record
data for two years, during which time we'll cover Arecibo's visible band about four times.

Every week about ten newly-recorded tapes arrive from Arecibo. These tapes are catalogued and
stored. Next, the data is divided into work units, the pieces that are sent to clients. The data is divided
along two dimensions: time and frequency. We decided that work units should be about 0.3 MB -
large enough to keep a computer busy for a while, but small enough so that, even over a 28.8- Kbps
modem, the transmission time is only a few minutes. We wanted each work unit to cover several times
the beam period (the time it takes for the beam to move across a point in the sky, typically about 20
seconds). To accomplish this, we divide the data into 256 frequency bands, each about 10 KHz wide.
We then slice each band into pieces 256,000 samples long - about 107 seconds of recording time.
Work units in a given band are overlapped in time by 20 seconds, ensuring that each beam period is
contained entirely in at least one work unit.

The task of splitting data tapes into work units is itself computationally intensive - enough so that we
considered making it a distributed task unto itself. In the end we assembled a group of six
workstations, each equipped with a DLT tape drive, running the splitter program full-time.

Work units are stored on a computer with about 300 GB of disk space. Ideally, each work unit should
remain in storage until a result for it has been returned. However, with 50 GB of data pouring in from
Arecibo every day, and with some slow computers taking a week or more to complete a work unit, this
can lead to a situation where we run out of space for new work units. Our current policy is to delete
work units even if no result has been returned yet.

A relational database keeps track of everything: tapes, work units, results, users, and so on. This

database has grown to several hundred gigabytes, and we place a tremendous load on it. Although we
have spread it across two large server machines, it is frequently a performance bottleneck.

page 46

Peer to Peer: Harnessing the Power of Disruptive Technologies

The most visible component of SETI@home is the client program. For Windows and Macintosh users,
this program is a screensaver: it only does its work when the computer isn't being used. The client sets
up an Internet connection to the SETI@home data distribution server, obtains a work unit, and closes
the connection. It then processes the data; this may take anywhere from an hour to several days,
depending on the speed of the computer. When it's finished, the client reconnects to the server, sends
back the results, and gets a new work unit. Every few minutes the program writes a "checkpoint” file
to disk, so that it can pick up where it left off in case the user turns off the computer.

The SETI@home data distribution server accepts connections from clients, collects their results, and
sends them new data. The data server may send either new work units or previously sent work units
that are still on disk. Many connections may arrive each second, and it may take several minutes (e.g.,
over a modem connection) to handle a request. So the server uses a large number of processes; in
many respects it is like a web server such as Apache. The server system also uses several other
programs, such as a "garbage collector" that removes work units for which results have been received.

If a transmitter and/or receiver is accelerated (e.g., because of planetary rotation or orbit), a signal
sent at a constant frequency will be heard as drifting in frequency. SETI@home uses a technique
called "coherent integration" for detecting drifting signals. SETI@home examines about 50,000 drift
rates, ranging from -50 to +50 Hz/sec. For each drift rate, the client program transforms the data to
remove the drift and then looks for signals at constant frequency. This gives about 10 times better
sensitivity than looking for drifting signals directly.

For a given drift rate, the program uses 15 different FFT lengths, or frequency resolutions. A
mathematical theorem called the Heisenberg Uncertainty Principle says that you can examine a signal
with high frequency resolution or high time resolution, but not both. Since we don't know what
characteristics an alien signal might have, we explore the full range of this trade-off.

For a given drift rate and FFT length, the program computes the time-varying power spectrum of the
signal. This produces an array whose dimensions are time and frequency, and whose value is the
power (the SETI@home graphics show a 3-D color graph of this array). The power array is analyzed,
looking for several types of signals:

Spikes
Power values much higher than the local average.
Gaussians

Ridges in the data, along the time axis, whose shape matches the bell-shaped curve (called a
"Gaussian") of the telescope beam.

Pulses

Signals at a constant frequency that cycle on and off, with a Gaussian envelope. The pulse rate,
phase, and duty cycle are not known in advance. We use an algorithm called Fast Folding,
originally developed for finding pulsars, that efficiently covers a wide range of possibilities.

Triplets
Groups of three evenly spaced spikes at the same frequency.

Signals that exceed predefined thresholds are returned to the server and added to the database. The
client doesn't have a flashing light that goes off when an ET signal is found; this isn't possible. Man-
made " radio frequency interference" (RFI), coming from TV stations, cell phones, and car ignitions,
leaks into the radio telescope and is often indistinguishable from an ET signal. RFI rejection is a hard
problem for radio SETI. Our approach is to check our database of candidate signals for two or more
signals at the same frequency and sky position, but at different times. Man-made interference changes
from one month to the next, but (hopefully) alien signals will remain unchanged.

So SETI@home's detection of an extraterrestrial signal, if it happens, will show up first on a computer

screen at Berkeley, sometime towards the end of the project. But our database will have a complete
record of the users whose PCs contributed to the detection, and they'll share in the credit.

page 47

Peer to Peer: Harnessing the Power of Disruptive Technologies

SETI@home's web site (http://setiathome.berkeley.edu/) plays an important role in the project. At
the site, people can download the client program, learn about SETI@home and radio SETI, and create
and join teams. The web site also shows current statistics and "leader boards:" lists of users and
teams, ordered by number of work units completed. These pages are generated by programs that
obtain the latest information from the database.

5.3 Trials and tribulations

SETI@home has faced many difficulties and challenges. Server performance, for example, has been a
major problem. As more and more people downloaded and ran the client, the stream of client requests
grew from a trickle to a torrent. At first, our server system consisted of three pieces: an Informix
database server, the data distribution server, and an Apache web server. These ran on three Sun
workstations, which also served as our personal computers.

In the first week the server system quickly was overwhelmed. Client connections were being turned
away, resulting in irritating error messages being displayed to users, and hence a torrent of email.

We scrambled to fix these problems by modifying the software. For example, we realized that much of
the load on the database server was due to updating lots of accounting records (for countries, CPU
types, teams, etc.) for each result received. We hastily revised the system to update the accounting
records off-line, combining thousands of database writes into a single write. This offline system
quickly fell behind, producing yet another wave of irate email, but at least the data distribution server
now kept up.

It quickly became clear that we needed more powerful server hardware. Sun Microsystems came to
our rescue, and over the next year they donated several of their high-performance server machines.
Even with these improvements, server performance continues to be an issue. Resources in general,
especially funding and manpower, have been a problem. We've received funds from a variety of
private donors and a grant from the University of California. This money has been enough to hire
about three full-time employees. A project of similar magnitude in the private sector would probably
employ 20 or 30 people. We've had to cut corners in many areas (for example, there is no customer
support), and some tasks have fallen far behind schedule.

Another problem area involved processor-specific optimizations. The SETI@home client is written in
C++, and we compile it using standard compilers such as Microsoft VC++ and Gnu's gcc.
Performance-conscious users disassembled the inner loops of the program and figured out that it was
doing FFTs and that the code was non-optimal on many processors. For example, several variants of
the x86 architecture, such as AMD's 3DNow, have instructions that can do FFTs faster. This led to
demands from 3DNow enthusiasts that we release a version optimized for 3DNow. Similar requests
came from Altivec, MIPS, and Alpha owners.

We didn't have the manpower to maintain lots of processor-specific versions of the code. However,
several people figured out how to replace the FFT routine at the heart of SETI@home with a faster
routine. Some of them did this incorrectly, producing clients that returned incorrect results.

Doctored versions of the program were just one of many security challenges. Most of the problems
involved "credit cheating" by, for example, returning the same result file over and over. People also
doctored their result files, making it appear that their computers had found a strong signal. It's not
clear what motivated these activities - after all, there are no financial rewards for work done. We
invested a large amount of effort in making a more secure version of the client, which uses
cryptographic checksumming to detect tampering with result files and with the program itself.

Some people feel that SETI@home should be an "open source" project, that we should distribute the
source code and solicit the help of volunteer programmers to fix bugs and make enhancements.
Indeed, we tried this for a short period and (perhaps due to our inexperience managing open source
projects) were quickly inundated with code that, for various reasons, was unusable. We were also
concerned that someone might substitute their own signal detection algorithm, announce a signal
discovery, and destroy our project's credibility. When we launched the project as non-open source, a
vocal group of critics created a web site calling for a boycott of SETI@home and attacking us for not
being "free software." (Many people have interpreted this as meaning that we charge money for the
client software, which is not the case.)

page 48

http://setiathome.berkeley.edu/

Peer to Peer: Harnessing the Power of Disruptive Technologies

5.4 Human factors

Early in 1998, we launched a SETI@home web site describing the idea and letting people sign up. It
was a good time to start a project like SETI@home. Public interest in SETI had been stirred by the
movie Contact, which was released in July 1997. This movie, based on a novel by Carl Sagan, describes
radio SETI in reasonably accurate terms, and parts of it were filmed at Arecibo.

It became clear that there would be no shortage of participants - over 400,000 people signed up at the
web site. After a long period of development and testing, we released the client software on May 17,
1999. In the first week after the launch, over 200,000 people downloaded and ran the client. This
number has grown to 2,400,000 as of October 2000. People in 226 countries around the world run
SETI@home. 50% of them are outside the U.S.; there are even 73 in Antarctica.

People have helped SETI@home in every way imaginable. People upgrade their computers, or buy
new computers, just to run SETI@home faster. In Europe, people run SETI@home in spite of
expensive Internet connection setup charges. Volunteers translated the web site into about 30 foreign
languages. A number of people have written programs that track their work in elaborate detail.
Graphic artists sent us dozens of banner and link graphics; one of these was so attractive that it
replaced Gedye's original planet-and-wave image (which he threw together in PowerPoint) as our
logo.

When it became clear that SETI@home was being widely embraced by the public, several questions
arose. How was the word about SETI@home being spread? Why were people running SETI@home?
Were they leaving their computers on longer, or buying faster computers, because of SETI@home?

We've heard the following "viral marketing" scenario from many sources: one person in an office
starts running SETI@home; people see the screensaver graphics, ask about it, hear the explanation of
the project, and try it themselves. Soon the entire office is running it.

In search of more quantitative information, we ran a poll on our web site, with questions involving
demographics and attitudes about SETI and distributed computing. Some of the results were
surprising; for example, only 7% of the respondents are female. We learned that our users are sober in
their expectations: Only 10% think that a signal will be detected within the two-year duration of the
project.

5.5 The world's most powerful computer

Scientific computations are often measured in units of floating-point operations - additions and
multiplications of numbers with fractional parts, like 42.0 or 3.14159. A common unit of
supercomputer speed is trillions of floating-point operations per second, or TFLOPS.

The 1.0 TFLOPS barrier has been broken only in the last year or so. The fastest supercomputer is
currently the ASCI White, built by IBM for the U.S. Department of Energy. It costs $110 million,
weighs 106 tons, and has a peak performance of 12.3 TFLOPS.

SETI@home is faster than ASCI White, at less than 1% of the cost. The FFT computations for each
SETI@home work unit require 3.1 trillion floating-point operations. In a typical day, SETI@home
clients process about 700,000 work units. This works out to over 20 TFLOPS. It has cost about
$500,000, plus another $200,000 or so in donated hardware, to develop SETI@home and operate it
for a year. Of course, the cost of the one million PCs running SETI@home greatly exceeds that of ASCI
White - but these PCs were bought and paid for before SETI@home and would exist even without it.

As of October 2000, SETI@home has received 200 million results, for a total of 4 x 102° floating-point
operations. We believe that this is the largest computation ever performed. And in terms of the
potential of the Internet for scientific computing, SETI@home is the tip of the iceberg. There are
projected to be one billion Internet-connected computers by 2003. If 10% of them participate in
distributed computing projects, there will be enough computing power for 100 projects the size of
SETI@home.

To what range of problems is this power applicable? Certainly not all problems. It must be possible to
factor the problem into a large number of pieces that can be handled in parallel, with few or no
interdependencies between the pieces. The ratio between communication and computation must be
fairly low: for example, it mustn't take an hour to transfer the data for one second of computing.

page 49

Peer to Peer: Harnessing the Power of Disruptive Technologies

Surprisingly many problems meet these criteria. Some of them, such as mathematical problems, are of
academic interest; others are in areas of commercial importance, such as genetic analysis. The range
of feasible problems will increase along with communication speed and capacity; for example, it may
soon be feasible to do computer graphics rendering for movies.

5.6 The peer-to-peer paradigm

In the brief history of computer technology, there have been several stages in the way computer
systems are structured. The dominant paradigm today is called client/server: Information is
concentrated in centrally located server computers and distributed through networks to client
computers that act primarily as user interface devices. Client/server is a successor to the earlier
desktop computing and mainframe paradigms.

Today's typical personal computer has a very fast processor, lots of unused disk space, and the ability
to send data on the Internet - the same capabilities required of server computers. The sheer quantity
of Internet-connected computers suggests a new paradigm in which tasks currently handled by central
servers (such as supercomputing and data serving) are spread across large numbers of personal
computers. In effect, the personal computer acts as both client and server. This new paradigm has
been dubbed peer-to-peer (P2P). SETI@home and Napster (a program, released about the same time
as SETI@home, that allows people to share sound files over the Internet) are often cited as the first
major examples of P2P systems.

The huge number of computers participating in a P2P system can overcome the fact that individual
computers may be only sporadically available (i.e., their owners may turn them off or disconnect them
from the Internet). Software techniques such as data replication can combine a large number of slow,
unreliable components into a fast, highly reliable system.

The P2P paradigm has a human as well as a technical side - it shifts power, and therefore control,
away from organizations and toward individuals. This might lead, for example, to a music distribution
system that efficiently matches musicians and listeners, eliminating the dilution and homogenization
of mass marketing. For scientific computing, it could contribute to a democratization of science: a
research project that needs massive supercomputing will have to explain its research to the public and
argue the merit of the research. This, I believe, is a worthwhile goal and will be a significant
accomplishment for SETI@home even if no extraterrestrial signal is found.

page 50

Peer to Peer: Harnessing the Power of Disruptive Technologies

Chapter 6. Jabber: Conversational Technologies

Jeremie Miller, Jabber

Conversations are an important part of our daily lives. For most people, in fact, they are the most
important way to acquire and spread knowledge during a normal working day.

Conversations provide a comfortable medium in which knowledge flows in both directions, and where
contributors share an inherent context through their subjects and relationships. In addition to old
forms of conversations - direct interaction and communication over the phone and in person -
conversations are becoming an increasingly important part of the networked world. Witness the
popularity of email, chat, and instant messaging, which enable users to increase the range and scope
of their conversations to reach those that they may not have before.

Still, little attention has been paid in recent years to the popular Internet channels that most naturally
support conversations. Instead, most people see the Web as the driving force, and they view it as a
content delivery platform rather than as a place for exchanges among equals. The dominance of the
Web has come about because it has succeeded in becoming a fundamentally unifying technology that
provides access to content in all forms and formats. However, it tends toward being a traditional one-
way broadcast medium, with the largest base of users being passive recipients of content.

Conversations have a stubborn way of reemerging in any human activity, however. Recently, much of
the excitement and buzz around the Web have centered on sites that use it as a conversational
medium. These conversations take place within a particular web site (Slashdot, eBay, Amazon.com) or
an application (Napster, AIM/ICQ, Netshow).

And repeating the history of the pre-Web Internet, the new conversations sprout up in a disjointed,
chaotic variety where the left hand doesn't know what the right hand is doing. The Web was a godsend
for lowering the barrier to access information; it increased the value of all content by unifying the
technologies that described and delivered that content. In the same way, Internet conversations stand
to benefit significantly by the introduction of a common platform designed to support the rich
dynamic and flexible nature of a conversation.

Jabber could well become this platform. It's not a single application (although Jabber clients can be
downloaded and used right now) nor even a protocol. Instead, using XML, Jabber serves as a glue that
can tie together an unlimited range of applications that tie together people and services. Thus, it will
support and encourage the growth of diverse conversational systems - and this moment in Internet
history is a ripe one for such innovations.

6.1 Conversations and peers

So what really is a conversation? A quick search using Dictionary.com reveals the following:
con-ver-sa-tion (kdn-ver-'s -sh n) n. 1. A spoken exchange of thoughts, opinions, and
feelings; a talk. 2. An informal discussion of a matter by representatives of
governments, institutions, or organizations. 3. Computer Science. A real-time

interaction with a computer.

Essentially, a conversation is the rapid transfer of information between two or more parties. A
conversation is usually characterized by three simple traits: it happens spontaneously, it is transient
(lasting a short time), and it occurs among peers - that is, all sides are equal contributors.

Let's turn then to the last trait. The term "peer" is defined by Dictionary.com:

peer (pir) n. 1. A person who has equal standing with another or others, as in rank,
class, or age; children who are easily influenced by their peers.

page 51

Peer to Peer: Harnessing the Power of Disruptive Technologies

The Internet expands this definition to include both people (P) and applications (A). Inherently, when
peers exchange information, it is a conversation, since both sides are equal and are transiently
exchanging information with each other. Person-to-person conversations (P-P) include email, chat,
and message boards. But crucial conversations also include application-to-application (A-A) ones such
as web services, IP routing, and UUCP. Least common, but most intriguing for future possibilities, are
person-to-application (P-A) conversations such as smart agents and bots.

It's interesting to take a step back and look at the existing conversations happening on the Internet
today. How well does each technology map to the kind of natural conversational style we know from
real life? Let's identify a few important metrics to help evaluate these traditional forms of Internet
communication as conversational channels:

Time
The more rapidly messages can be created and delivered, and the more rapidly the recipient
can respond, the more productive the conversation is for both participants.

P-A
A technology provides greater potential for future innovation if it inherently supports
applications as well as people.

Peers

Participants in a conversation should be equal and the conversation bidirectional.
Distributed

Conversations may be constrained if there is a central form of control or authority.
We can now evaluate a few technologies along some of the metrics just defined.

Email comes to mind first as the most popular form of conversation now happening on the Internet. It
is relatively fast, each message taking typically between 30 seconds and a few days to deliver, but
certainly not real-time. It is predominantly P-P, with some P-A applications, but it is not a very
natural use for A-A, because it provides no structure for content. Usenet is similar to email but is
focused on group discussions. Both are innately distributed, and participants are peers.

Internet Relay Chat (IRC) is a very popular conversational medium, primarily supporting real-time
group discussions. As with email, it's primarily P-P with some P-A and very little A-A. Participants are
peers. IRC is a distributed application within a network of groups, but it is restricted to that particular
network - it does not extend beyond a single collection of groups.

The traditional Web is real-time, but in a strict sense it does not support conversations, because the
participants are not peers. The content may be produced by a person, but it has a natural flow in only
one direction. Applications that support conversations can be built and made available on the Web,
but they are pretty rigid - each conversation is specific and centralized to that application.

The next-generation Web - also called the Two-Way Web by visionary developer Dave Winer - is
represented by Microsoft's .NET; and it tries to solve the shortcomings in the evolution of the Web. It
involves personal/fractional-horsepower (specialized) HTTP and DAYV servers. These systems more
naturally support peers and conversations than the traditional Web, but the conversations between
these peers are still predominantly one-way (consumer or producer) and are often centralized based
on the application or content.

Traditional instant messaging services, such as AOL Instant Messenger, ICQ, Yahoo! Messenger, and
MSN Messenger, come the closest to a real-world conversation yet, and that is the reason for their
soaring popularity. They unfortunately focus primarily on P-P. The most significant drawback is that
they are commercial and completely centralized around a single closed service. You must be part of
the service to communicate with others on it.

None of these existing technologies provides a common platform for Internet conversations as the

Web does for content. Each is either limited in some important dimension or is specific to one
application.

page 52

Peer to Peer: Harnessing the Power of Disruptive Technologies

What could people do with an ideal, standardized conversational platform open to applications that
can cross boundaries and access end user content? Here are some fanciful future possibilities:

e I could ask a coworker's word processor or source editor what documents they are editing and
discuss revisions.

e My spell checker could ask the entire department to check the validity of unknown acronyms
and project or employee names.

e Instead of trying to combine the details of everybody's lives in a central address book or
schedule, each application that needs to discover this information could ask other peers for it.
Different conversations could be with different communities I define, such as my department,
my family (for holiday card or birthday lists), or my friends (for event invitations).

e My television set or video recorder could ask my friends what programs they are watching and
use their recorders' extra space to save the programs in case I want to watch them too. With
broadband, the television sets could have a conversation exchanging the actual video.

e My games could exchange scores and playing levels with my friends' games and schedule
times to play collaboratively (possibly invoking some of the other peers above to schedule
conversations). I could also ask another game to deliver an important message or to join a
game.

e Businesses could reproduce some of the warmth and responsiveness of a phone conversation
online, replacing the cold, faceless e-commerce store or customer support site that serves to
drive us to our phones. The new sites could combine a rich context and content with the kind
of conversational medium we all like to have.

6.2 Evolving toward the ideal

A look back at a bit of the World Wide Web's brief history proves quite interesting and enlightening.
Back in its pioneering days, the Web was idealized as a revolutionary peer platform that would enable
anyone on the Internet to become a publisher and editor. It empowered individuals to publish their
unique collections of knowledge so that they were accessible by anyone. The vision was of a worldwide
conversation where everyone could be both a voice and a resource. Here are a few quotes from Tim
Berners-Lee to pique your interest:

The World Wide Web was designed originally as an interactive world of shared
information through which people could communicate with each other and with
machines (http://www.w3.org/People/Berners-Lee/1996/ppf.html).

I had (and still have) a dream that the web could be less of a television channel and
more of an interactive sea of shared knowledge. I imagine it immersing us as a
warm, friendly environment made of the things we and our friends have seen,
heard, believe or have figured out. I would like it to bring our friends and colleagues
closer, in that by working on this knowledge together we can come to better
understandings (http://www.w3.org/Talks/9510_Bush/Talk.html).

Although the Web fulfills this vision for many people, it has quickly evolved into a traditional
consumer/producer relationship. If it had instead evolved as intended, we might be in a different
world today. Instead of passively receiving content, we might be empowered individuals collectively
producing content, publishing parts of ourselves online to our family and friends, and collectively
editing the shared knowledge within our communities.

So where did it go wrong in this respect? It could be argued that the problem was technological, in that
the available tools were browsing-centric, and it wasn't easy to become an editor or publisher. A more
thought-provoking answer might be that the problem was social, in that there was little demand for
those empowering tools. Perhaps only a few people were ready to become individual publishers, and
the rest of society wasn't ready to take that step.

page 53

http://www.w3.org/People/Berners-Lee/1996/ppf.html
http://www.w3.org/Talks/9510_Bush/Talk.html

Peer to Peer: Harnessing the Power of Disruptive Technologies

The Web did not stagnate, however. It continued to evolve from a content distribution medium to an
application distribution medium. Few users are publishing content, but a huge number of companies,
groups, and talented individuals are building dynamic applications with new characteristics that reach
beyond the original design of the Web. The most exciting of these exhibit characteristics of a peer
medium and empower individuals to become producers as well as consumers. Examples include eBay,
Slashdot, IMDB, and MP3.com. Although the applications provide a new medium for conversations
between P-P peers, the mechanisms for doing so are application-specific. These new web-driven peer
applications also have the drawbacks of being centralized, of not being real-time in the sense of a
conversation, and of requiring their own form of internal addressing.

So instead of the Web being used primarily as a peer publishing medium, it has become a client/server
application medium upon which a breed of peer applications are being built.

Elsewhere in the computer field we can find still other examples of systems that are incorporating
greater interactivity. Existing desktop applications are evolving in that direction. They are becoming
Internet-aware as they face competition from web sites, so that they can take advantage of the Internet
in order to remain competitive and provide utility to the user. Thus, they are evolving from static,
standalone, self-contained applications into dynamic, networked, componentized services.

Microsoft, recognizing the importance of staying competitive with online services, is pushing the
evolution of desktop applications with their .NET endeavor. By turning applications into networked
services, .NET blurs the lines even further between the desktop and the Internet.

The evolution of the Web and the desktop shows a definite trend towards applications becoming peers
and having conversations with other applications, services, and people. The common language of
conversations in both mediums is XML. As a way of providing a hierarchical structure and a
meaningful context for data, XML is being adopted worldwide as the de facto language for moving this
data between disparate applications. As Tim Bray puts it, "XML is the ASCII of the future."

6.3 Jabber is created

To fully realize the potential for unifying the conversations ranging throughout the Internet today, and
enabling applications and services to run on top of a common platform, a community of developers
worldwide has developed a set of technologies collectively known as Jabber (http://jabber.org/).
Jabber was designed from the get-go for peer conversations, both P-P and particularly A-A, and for
real-time as well as asynchronous/offline conversations. Jabber is fully distributed, while allowing a
corporation or service to manage its own namespace. Its design is a response to the popularity of the
closed IM services. We are trying to create a simple and manageable platform that offers the
conversational traits described earlier in this chapter, traits that none of the existing systems come
close to providing in full.

Jabber began in early 1998 out of a desire to create a truly open, distributed platform for instant
messaging and to break free from the centralized, commercial IM services. The design began with
XML, which we exploited for its extensibility and for its ability to encapsulate data, which lowers the
barrier to accessing it. The use of XML is pervasive across Jabber, allowing new protocols to be
transparently implemented on top of a deployed network of servers and applications. XML is used for
the native protocol, translated to other formats as necessary in order to communicate between Jabber
applications and other messaging protocols.

The Jabber project emerged from that early open collaboration of numerous individuals and
companies worldwide. The name Jabber symbolizes its existence as numerous independent projects
sharing common goals, each building a part of the overall architecture. These projects include:

¢ A modular open source server written in C

¢ Numerous open source and commercial clients for nearly every platform

e Gateways to most existing IM services and Internet messaging protocols

e Libraries for nearly every programming language

e Specialized agents and services such as RSS and language translations

page 54

http://jabber.org/

Peer to Peer: Harnessing the Power of Disruptive Technologies

Jabber is simply a set of common technologies that all of these projects agree on collaboratively when
building tools for peer-to-peer systems. One important focus of Jabber is to empower conversations
between both people and applications.

The Jabber team hopes to create an open medium in which the user has choice and flexibility in the
software used to manage conversations, instead of being hindered by the features provided by a
closed, commercial service. We hope to accelerate the development of peer applications built on an
open foundation, by enabling them to have intelligent conversations with other people and
applications, and by providing a common underlying foundation that facilitates conversations and the
accessibility of dynamic data from different services.

6.3.1 The centrality of XML

Fundamentally, Jabber enables software to have conversations in XML. When people use Jabber-
based software as a messaging platform to have conversations with other people, data exchanges use
XML under the surface. Applications use Jabber as an XML storage and exchange service on behalf of
their users.

XML is not only the core format for encoding data in Jabber; it is also the protocol, the transport layer
between peers, the storage format, and the internal data model within most applications. XML
permeates every conversation.

The Jabber architecture is also aware of XML namespaces, which permit different groups of people to
define different sets of XML tags to represent data. Thus, using a namespace, one group (Dublin Core)
has developed a set of tags for talking about the titles, authors, and other elements of a document.
Another group might define a namespace for describing music. An instant messaging community
using Jabber could combine the two namespaces to exchange information on books about music.
Chapter 13, looks at the promise of Dublin Core and other namespaces for peer-to-peer applications.

Here is a simple message using Jabber's XML format:

<message to="hamlet@denmark" from="horatio@denmark" type="chat">
<body>Here, sweet lord, at your service.</body>
</message>

And here's a hypothetical message with additional data in a namespace included:

<message to="horatio@denmark" from="hamlet@denmark">
<body>Angels and Ministers of Grace, defend us!</body>
<prayer xmlns="http://www.grace.org">
<verse>...</verse>
</prayer>
</message>

By supporting namespaces, Jabber enables the inclusion of any XML data in any namespace anywhere
within the conversation. This allows applications and services to include, intercept, and modify their
own XML data at any point. Jabber is thus reduced to serving as a conduit between peers. Ironically,
this lowly status provides the power that Jabber offers to Internet conversations.

6.3.2 Pieces of the infrastructure

While the goal of Jabber is to support other naming conventions and protocols, rather than to create
brand-new ones, it depends on certain new concepts that require new types of syntax and binding
technologies. These help create a common architecture.

6.3.2.1 Identity

Naming is at the heart of any system - each resource must have a unique identity. In Jabber, each
resource is identified by a three-part name consisting of a user, a server, and a resource.

The user is often an individual, and the server is a system that runs a Jabber-based application. In a
name, the user and server are formatted just like email, user@server. This provides a general way to
pass identification between people that is already well understood and socially accepted. Since the
server resolves the username, the format also allows a user's identity to be managed by a service or
corporation the way America Online and Napster manage their usernames.

page 55

http://www.grace.org

Peer to Peer: Harnessing the Power of Disruptive Technologies

This is an important point for Internet services that are providing a public utility to consumers or
companies, and especially for corporations that want to or are required to manage their identities very
carefully. This also allows any user to use a third party, such as Dynamic DNS Network Services
(http://dyndns.org/), for transient access to a permanent hostname so as not to be forced to rely on
someone else's identity.

The server component of the identity could also provide a community aspect to naming, as it may be
shared between a small group of friends, a family, or a special interest group. The name then stands
out and identifies the user's relationship as part of that community.

The third part of the identity is the resource. As in a Unix filename or URL, the resource follows the
server and is delimited by a slash, as in user@server/resource. Outside Jabber, the name is formatted
like a combination of an email address and a web URL: jabber://user@server/resource/data.

This third aspect of the identity, the resource, allows any Jabber application to provide public access
to any data within itself, analogous to a web server providing access to any file it can serve. It also
serves to identify different applications that might be operating for a single user. For example, my
Jabber ID is jer@jabber.org, and when I'm online at home my client application might be identified as
jer@jabber.org/desktop.

6.3.2.2 Presence

Presence is a concept fundamental to conversations, because it supports the arbitrary coming and
going of participants. Technically, presence is simply a state that a user or application is in.
Traditional states in instant messaging include online, offline, and somewhere in between (away, do
not disturb, sleeping, etc.). The Jabber architecture automatically manages presence information for
users and applications, distributing the information as needed while strictly protecting privacy. It is
often this single characteristic that adds the most value to the peers in a conversation: just knowing
that the other peer is available to have a conversation.

Presence can go beyond simple online/offline state information. XML could be used to convey
location, activity, and contextual (work/project) or application-specific data. Presence information
itself provides an inherent context for P-P conversations, as well as status and location context for A-A
conversations.

Here is a simple presence example in XML:

<presence from="hamlet@denmark">
<show>away</show>
<status>Gone to England</status>
</presence>

6.3.2.3 Roster

Another powerful feature of a traditional instant messaging service is the buddy list or roster. The
importance of this list is often underestimated. It is a valuable part of the user's reality that they've
stored and made available to their applications.

In social terms, each user's roster is his or her community. It defines the participants in this
community or relationships to larger communities. A roster is an actualization of personal trust and
relationships with peers. Applications should use this list intelligently to share their functionality and
filter conversations.

The circle of trust in which a user has chosen to include his or her computer is a starting point for
applications to locate other devices the user utilizes. It should also be used for choosing to collaborate
with the resources available from trusted peers. This single, simple feature begins to open the door to
the future possibilities mentioned near the beginning of this chapter, and it forms a step toward the
warm, friendly environment envisioned by Tim Berners-Lee for the World Wide Web.

page 56

http://dyndns.org/
jabber://user@server/resource/data

Peer to Peer: Harnessing the Power of Disruptive Technologies

6.3.3 Architecture

The Jabber architecture closely resembles email. Peers are connected and route data in a chain until it
reaches the desired recipient. A client is connected to its server only, and its server is responsible for
negotiating the delivery and receipt of that client's data with other servers or networks using whatever
protocol is available. All data within the architecture is processed immediately and passed on to the
next peer, or stored offline for immediate delivery once that peer is available again.

Peers can play traditional client and server roles within the Jabber architecture. Every server acts as a
peer with respect to another server, using SRV DNS records to locate the actual server. Servers also
use hostname dialback, independently contacting the sending server to validate incoming data. This
prevents spoofing and helps ensure an overall more reliable and secure trust system.

All clients are peers with respect to other clients, and, after establishing a conversation with their
servers, are able to establish real-time conversations in XML with any other client. Clients can also
include or embed a server internally so that they can operate in any role and provide additional
flexibility and security.

6.3.3.1 Protocols

Along with support for all major instant messaging services (AIM, ICQ, MSN, Yahoo!), Jabber is also
protocol agnostic. It uses a variety of applications between the endpoints of the conversations to
transparently translate the XML data to and from another protocol. In its immediate applications,
Jabber's translation capabilities let it support P-P relationships across traditional instant messaging
services, IRC, and email. But the same flexibility also allows the construction of A-A bridges, such as
transparent access to SIP, IMXP, and PAM applications, as well as access to Jabber's native presence
and messaging functionality from those protocols.

Finally, the protocol-agnostic design of Jabber allows it to participate in the exciting evolution of the
Web mentioned earlier in Section 6.2: An evolution including such technologies as WebDAV, the use
of XML over HTTP in the SOAP protocol, the RSS service that broadcasts information about available
content, and other web services. We hope to set up revolving door access so that HTTP applications
can access native Jabber functionality and so that Jabber applications can transparently access
conversations happening over HTTP.

6.3.3.2 Browsing

A recent addition to Jabber is browsing, which is similar to the feature of the same name in the
Network Neighborhood on Microsoft systems. Browsing lets users retrieve lists of peers from other
peers and establish relationships between peers. It can be used to see what services might be available
from a server, as well as what applications and paths of communication a user has made available to
other users and their applications.

Peers that a user might make available could include their normal instant messaging client (home,
work, laptop, etc.), a pager transport, an offline inbox, a cell phone, a PDA, a TV, a scheduling
application, a 3-D game, or a word processor. Additionally, XML information can be made browsable
by a user or application, so that a user's vCard (verification information), public key, personal recipes,
music list, bookmarks, or other XML information could be read by both people and applications.
Browsing also allows people and applications to locate public peers, such as other messaging gateways
mentioned earlier, web services, group chats, and agents (searching, translation, fortune,
announcements, Eliza).

6.3.3.3 Conversation management

By centralizing and coordinating all of your conversations via a central identity, the software
managing that identity for you may be empowered to act upon incoming conversations and
intelligently filter them. This feature can be used to modify the content of a transmission or, even
more often, to make decisions about what to do with a conversation when you're not available (store it
offline, copy it to a pager, forward it to another account, etc.).

page 57

Peer to Peer: Harnessing the Power of Disruptive Technologies

The same feature is also useful to manage the conversations between applications. For instance, if you
maintain a personal peer and a work-scheduling peer, conversation management software can
redirect incoming conversations to the correct agent based on the relationship to the sender stored in
the roster. When you have all of your conversations managed by a common identity, they can be
managed directly from one single point, enabling you to have more control over your conversations.

6.4 Conclusion

For more information about Jabber, or to become involved in the project (we openly welcome anyone
interested), visit http://jabber.org/ or contact the core team at team@jabber.org. The 1.0 server was
released in May of 2000 and rapidly evolved into a 1.2 release in October, due to popularity and
demand. The development focus is now on helping the architecture mature and further developing
many of the ideas mentioned here. The development team is collaborating to quickly realize the future
possibilities described in this paper, so that they're not so "future" after all.

page 58

http://jabber.org/

Peer to Peer: Harnessing the Power of Disruptive Technologies

Chapter 7. Mixmaster Remailers

Adam Langley, Freenet

Remailers are one of the older peer-to-peer technologies, but they have stood the test of time. Work
done on them has helped or motivated much of the current work in the P2P field. Furthermore, they
can be valuable to users who want to access many of the systems described in other chapters of this
book by providing a reasonable degree of anonymity during this access, as explained in Chapter 15.

Anonymous remailers allow people to send mail or post to newsgroups while hiding their identities.
There are many reasons why people might want to act anonymously. Maybe they fear for their safety if
they are linked to what they post (a concern of the authors of the Federalist Papers), maybe they think
people will prejudge what they have to say, or maybe they just prefer to keep their public lives separate
from their private lives. Whatever the reason, anonymous posting is quite difficult on the Internet.
Every email has, in its headers, a list of every computer it passed through. Armed with that knowledge,
an attacker could backtrack an email to you. If, however, you use a good remailer network, you make
that task orders of magnitude harder.

Mixmasters (also known as Type 2 remailers) are the most common type of remailer. The Type 1
remailers are technically inferior and no longer used, though Mixmasters provide backward
compatibility with them. The first stable, public release of Mixmaster was on May 3, 1995, by Lance
Cottrell. The current version is 2.0.3, released on July 4, 1996. Don't be put off by the old release date;
Mixmasters are still the best remailers.

7.1 A simple example of remailers

In order to demonstrate the basics of remailers, I'll start with the Type 1 system. The Type 2 system
builds on it, adding some extra assurances that messages cannot be traced.

If you wanted to mail something anonymously to alice@world.net, you could send the following
message to a Mixmaster remailer:

Anon-To: alice@world.net
Latent-Time: +1:30

I have some important information for you. I hope you understand
why I've taken the precautions I have to keep my identity a secret.

The remailer would hold this message for one and a half hours - to throw off track anyone who might
be sniffing traffic and trying to match your incoming message to the remailer's outgoing message - and
then strip all the headers except the subject and forward the mail to Alice. Alice would see that the
mail had come from the remailer and would have no idea who actually sent it.

However, this system does have problems. First, the remailer knows the destination and source of the
message and could be compromised. Second, while your message is in transit to the remailer, anyone
with privileged access to your local area network or an intervening mail hub can see that you are
sending anonymous messages to Alice. Finally, Alice has no easy way to reply to you.

In order to hide the fact that you are sending anonymous messages to Alice, you can encrypt the
message to the remailer. This assumes that you know the public key of the remailer, and while these
public keys are widely known, key management is always a weak spot.

Encryption stops anyone who views the message in transit to the remailer from seeing the message
and destination. (It should be noted that this doesn't hide the fact that you are sending anonymous
messages, and even that snippet of information could land you in trouble in some places.)

page 59

Peer to Peer: Harnessing the Power of Disruptive Technologies

To anyone who saw it, the message would look like this:

éﬁcrypted: PGP

————— BEGIN PGP MESSAGE-----
version: 5])
Comment: The following is encrypted data

mQG1BDMG74kRBACZWROH]j jbTrgGxp7275Caldaol72owkPgj6xxH12KNNDyVSyN1i
D+PDQUKOW86EXTr9fR8m18v8yDzSsuuQCthoD8UPT7Kk/HtR//TCGWRhoN81ynrsm
FLVhGSR5n41gf6oNUeIObKYYOWmXzjtkKCkgAUtbsImod8/5hm7zKCQT/LwCgveTw
3bcbQ+A02SM1 rxuzcx4qCcfub/1RRuZsdsIFSXIN/tBDLc1gtepGQbtwIG02QSCMa
ut81s+WEytbh+1/jqBP/gN9Rry3YUtuRXmjjiYFQ813IWA5kd4VvxzKP6nBTZfggEW
6BrGB8wDUhqTVL7SqivqrbdgB7S3wQIuzz17vs1Alwzc37vDmHkw50wshTuvTOPwW
————— END PGP MESSAGE-----

This also solves the third problem of Alice needing to reply. You can give Alice a block, encrypted to
the remailer, which contains your email address. If Alice then puts the encrypted block at the top of
her reply and sends it to the same remailer, the remailer can decrypt it and forward it back to you.
Alice can send messages to you without any way of knowing where they actually go. Thus, she has no
way of tracing you.

That leaves the second problem, namely that the remailer is the weak link. If Alice, or anyone else, can
compromise it, the whole project falls apart. The solution is a simple extension of the basic idea.
Instead of the remailer sending the message to Alice, it sends it to another remailer. That remailer
then sends it to another, and so on, until the last remailer in the chain sends it to Alice. Thus, no
remailer in the chain knows both the source and the destination of the message.

7.2 Onion routing

If any remailer reads the contents of your message, it will know who is receiving it at the end. The
solution to this involves a series of encryptions that hide the information from remailers in the middle.

Thus, when you send your message, you add an instruction to send it to alice@world.net, but you
encrypt this recipient information using a key from the last remailer in the chain. So only this last
remailer can determine her address. You then add instructions to send the mail to the last remailer
and encrypt that information so that only the second-to-last remailer can read it, and so on. You thus
form an "onion" of messages. Each remailer can remove a skin (one layer of encryption) and send the
message to the next remailer, and no remailer knows anything more than what is under the skin they
can remove. The layers are illustrated in Figure 7.1.

Figure 7.1. An onion of encrypted messages

The second rematier decrypds and finds fhe finaf address,

Conent of message / Te: afivei@warld net

/ The first ramailer bs and finds the mext address.
ff .r/ Tor remuoiler S remailar mef

This s fhe outer loyer, where the whale message
it enerypted ond saaf fo the firs! ramailer

——

You construct a reply block for Alice in the same fashion, an onion of encrypted messages. Alice, or
anyone else, would then need to compromise every remailer in the chain in order to remove every skin
of the onion and trace you.

7.3 How Type 2 remailers differ from Type 1 remailers
Type 2 remailers were designed to fix some of the problems with the Type 1 system above. Even

though the Type 1 system seems very good, there are a number of weaknesses that a powerful attacker
could use. Most of these weaknesses come from being able to do traffic analysis.

page 60

Peer to Peer: Harnessing the Power of Disruptive Technologies

Traffic analysis means capturing the bits that cross a communications channel so as to see every
packet that passes around a network - where it came from and where it's going. It is not necessary for
the snooper to be able to read the contents of every packet; a lot of useful information can be gathered
just from TCP and IP headers sent in the clear, or, as you will see, just from incidental characteristics
such as the length of a message.

In order to hide the connection between your incoming message and the Mixmaster's outgoing
message, each message must appear to the attacker exactly the same as every other message in the
system. The most basic difference between messages is their length. (Remember that the message is
multiply encrypted, so the contents don't count.) If an attacker can see a certain sized message going
into a remailer and then see a message of a very similar size going out again, he or she can follow the
message. Even though the message changes size at each remailer because a skin is peeled off, this
doesn't provide much protection. The change in size as the skins are removed is small and easily
calculated.

In order to make all messages the same size and frustrate traffic analysis, every Mixmaster message is
the same length. This is done by breaking the message into pieces and adding padding to the last part
to make it the same size. Each part is sent separately and has enough information for the last remailer
in the chain to reassemble them. Only the last remailer in the chain knows what messages go together,
because the information is only on the last skin. To every other remailer, each part looks like a
different message.

The next identifying mark that needs to be removed is the time. If a message enters a remailer and
another leaves immediately after, an attacker knows where the message is going and can trace it. This
is a more difficult problem to solve than it seems at first. Simply reordering messages, or delaying
them for a time, doesn't work. If the number of other messages is low, or if the attacker can stop other
messages from reaching the remailer, your message will still stand out.

Mixmasters try to solve this problem by sending out a random selection of messages periodically,
while always keeping a certain sized pool of messages. This makes it very difficult to match up
outgoing messages with incoming ones, but still not impossible. However, if the traffic on the
Mixmaster network is high enough, tracing the message over the whole chain of remailers becomes a
massive challenge for an attacker.

Finally, an attacker can capture your message and attempt to replay it through a remailer. Since your
message has the encrypted address of the next remailer, by sending many copies of it an attacker can
watch for an unusually large number of outgoing messages to a certain address. That address is likely
to be the next remailer in the chain (or the final destination). The attacker can then repeat this for
each remailer in the chain.

To stop this, every skin has a random ID number. A remailer will not forward a message with the same
ID number twice, so all the cloned messages will be dropped and no extra traffic will come out. An
attacker cannot change the ID number of a message because it is encrypted along with everything else.

7.4 General discussion

Mixmasters have taken remailing to a fine art and are very good at it. They are an interesting study in
peer-to-peer networks in which security is the absolute priority. Unlike many peer-to-peer networks,
the Mixmaster user must have knowledge of the network in order to build the onion. This means that
Mixmaster nodes are publicly known. It is possible to have a private remailer by simply not telling
anyone about it, but this would leave the traffic level very low and thus reduce security.

Unfortunately, Mixmasters themselves are often the target of attacks by people who, for one reason or
another, disagree that people have a right to anonymity. It has been known for people to send death
threats to themselves to try to get remailers shut down. The public nature of remailers makes such
attacks easier.

Life can be very hard for a Mixmaster administrator, because he has to explain to angry people why he
can't give them the email address of someone who has used his remailer. This goes some way to
explaining why there are only about 20-30 active Mixmasters and serves as a warning to other peer-
to-peer projects that provide anonymity.

page 61

Peer to Peer: Harnessing the Power of Disruptive Technologies

Chapter 8. Gnutella

Gene Kan, Gnutella and GoneSilent.com

When forced to assume [self-government], we were novices in its science. Its
principles and forms had entered little into our former education. We established,
however, some, although not all its important principles.

- Thomas Jefferson, 1824
Liberty means responsibility. That is why most men dread it.
- George Bernard Shaw

Gnutella is among the first of many decentralized technologies that will reshape the Internet and
reshape the way we think about network applications. The traditional knee-jerk reaction to create a
hierarchical client/server system for any kind of networked application is being rethought.
Decentralized technologies harbor many desirable qualities, and Gnutella is a point of proof that such
technologies, while young, are viable.

It is possible that Gnutella has walked the Earth before. Certainly many of the concepts it uses - even
the unconventional ones - were pioneered long ago. It's tricky to determine what's brand-new and
what's not, but this is for certain: Gnutella is the successful combination of many technologies and
concepts at the right time.

8.1 Gnutella in a gnutshell

Gnutella is a citizen of two different worlds. In the popular consciousness, Gnutella is a peer-to-peer,
techno-chic alternative to Napster, the popular Internet music swapping service. To those who look
past the Napster association, Gnutella is a landscape-altering technology in and of itself. Gnutella
turned every academically correct notion of computer science on its head and became the first large-
scale, fully decentralized system running on the wild and untamed public Internet.

Roughly, Gnutella is an Internet potluck party. The virtual world's equivalents of biscuits and cheese
are CPU power, network capacity, and disk space. Add a few MP3s and MPEGs, and the potluck
becomes a kegger.

On the technical side, Gnutella brings together a strange mix of CDMA, TCP/IP, and lossy message
routing over a reliable connection. It's a really strange concept.

Contrary to popular belief, Gnutella is not branded software. It's not like Microsoft Word. In fact,
Gnutella is a language of communication, a protocol. Any software that speaks the language is
Gnutella-compatible software. There are dozens of flavors of Gnutella compatibles these days, each
catering to different users. Some run on Windows, others on Unix, and others are multi- platform
Java or Perl. And as Gnutella's name implies, many of the authors of these Gnutella compatibles have
contributed to the open source effort by making the source code of their projects freely available.

8.2 A brief history

Besides its impact on the future of intellectual property and network software technology, Gnutella
has an interesting story, and it's worth spending a little time understanding how something this big
happens with nobody writing any checks.

8.2.1 Gnutella's first breath

Gnutella was born sometime in early March 2000. Justin Frankel and Tom Pepper, working under the
dot-com pen name of Gnullsoft, are Gnutella's inventors. Their last life-changing product, Winamp,
was the beginning of a company called Nullsoft, which was purchased by America Online (AOL) in
1999. Winamp was developed primarily to play digital music files. According to Tom Pepper, Gnutella
was developed primarily to share recipes.

page 62

Peer to Peer: Harnessing the Power of Disruptive Technologies

Gnutella was developed in just fourteen days by two guys without college degrees. It was released as
an experiment. Unfortunately, executives at AOL were not amenable to improving the state of recipe
sharing and squashed the nascent Gnutella just hours after its birth. What was supposed to be a GNU
General Public License product when it matured to Version 1.0 was never allowed to grow beyond
Version 0.56. Certainly if Gnutella were allowed to develop further under the hands of Frankel and
Pepper, this chapter would look a lot different.

At least Gnutella was born with a name. The neologism comes from ramming GNU and Nutella
together at high speed. GNU is short for GNU's Not Unix, the geekish rallying cry of a new generation
of software developers who enjoy giving free access to the source code of their products. Nutella is the
hazelnut and chocolate spread produced by Italian confectioner Ferrero. It is typically used on dessert
crepes and the like. I think it's great, and chocolate is my nemesis.

Anyway, Gnutella was declared an "unauthorized freelance project”" and put out to pasture like a car
that goes a hundred miles on a gallon of gas. Or maybe like a technology that could eliminate the need
for a physical music distribution network. Cast out like a technology that could close the books on a lot
of old-world business models? Well, something like that, anyway.

8.2.2 Open source to the rescue

It was then, in Gnutella's darkest hour, that open source developers intervened. Open source
developers did for Gnutella what the strange masked nomads did for George Clooney and friends in
Three Kings. Bryan Mayland, with some divine intervention, reverse engineered Gnutella's
communication language (also known as "Gnutella protocol") and posted his findings on Gnutella's
hideout on the Web: gnutella.nerdherd.net. Ian Hall-Beyer and Nathan Moinvaziri created a sort of
virtual water cooler for interested developers to gather around. Besides the protocol documentation,
probably the most important bit of information on the Nerdherd web site was the link to Gnutella's
Internet Relay Chat (IRC) channel, #gnutella. #gnutella had a major impact on Gnutella
development, particularly when rapid response among developers was required.

8.3 What makes Gnutella different?

Gnutella has that simple elegance and minimalism that marks all great things. Like Maxwell's
equations, Gnutella has no extraneous fluff. The large amount of Gnutella-compatible software
available is testimony to that: Gnutella is small, easy, and accessible to even first-time programmers.

Unlike the Internet that we are all familiar with, with all its at signs, dots, and slashes, Gnutella does
not give meaningful and persistent identification to its nodes. In fact, the underlying structure of the
Internet on which Gnutella lives is almost entirely hidden from the end user. In newer Gnutella
software (Gnotella, Furi, and Toadnode, for example), the underlying Internet is completely hidden
from view. It simply isn't necessary to type in a complex address to access information on the Gnutella
system. Just type in a keyword and wait for the list of matching files to trickle in.

Also unlike standard Internet applications such as email, Web, and FTP, which ride on the bare metal
of the Internet, Gnutella creates an application-level network in which the infrastructure itself is
constantly changing. Sure, the wires stay in the ground and the routers don't move from place to
place, but which wires and which routers participate in the Gnutella network changes by the second.
The Gnutella network comprises a dynamic virtual infrastructure built on a fixed physical
infrastructure.

What makes Gnutella different from a scientific perspective is that Gnutella does not rely on any
central authority to organize the network or to broker transactions. With Gnutella, you need only
connect to one arbitrary host. Any host. In the early days, discovery of an initial host was done by
word of mouth. Now it is done automatically by a handful of "host caches." In any case, once you
connect with one host, you're in. Your Gnutella node mingles with other Gnutella nodes, and pretty
soon you're in the thick of things.

Contrast that to Napster. Napster software is programmed to connect to http://www.napster.com/. At
http://www.napster.com/ is a farm of large servers that broker your every search and mouse click.
This is the traditional client/server model of computing. Don't get me wrong: client/server is great for
many things. Among its positive qualities are easy-to-understand scalability and management. The
downside is that by being the well-understood mainstay of network application science, client/server
is boring, inflexible, and monolithic. Those are bad words in the Internet lexicon.

page 63

http://www.napster.com/
http://www.napster.com/

Peer to Peer: Harnessing the Power of Disruptive Technologies

8.3.1 Gnutella works like the real world

So far, we know that Gnutella is an Internet potluck. We know it's impossible to stop. But how does it

actually work all this magic?

In its communication, it's like finding the sushi tray at a cocktail party. The following is a loose
description of the interaction on the Gnutella network.

8.3.1.1 A Gnutella cocktail party

The concepts introduced in this example, primarily the idea that a request is repeated by a host to
every other host known by that host, is critical to understanding how Gnutella operates. In any case,
you can see that Gnutella's communication concepts closely reflect those of the real world:

Cocktail party

Gnutella

You enter at the foyer and say hello to the
closest person.

You connect to a Gnutella host and issue a PING
message.

Shortly, your friends see you and come to
say hello.

Your PING message is broadcast to the Gnutella hosts in
your immediate vicinity. When they receive your PING,
they respond with a PONG, essentially saying, "Hello,
pleased to meet you."

You would like to find the tray of sushi, so
you ask your nearby friends.

You would like to find the recipe for strawberry rhubarb
pie, so you ask the Gnutella nodes you've encountered.

None of your drunken friends seem to
know where the sushi is, but they ask the
people standing nearby. Those people in
turn ask the people near them, and so on,

until the request makes its way around the
room.

One of the Gnutella nodes you're connected to has a
recipe for strawberry rhubarb pie and lets you know.
Just in case others have a better recipe, your request is
passed on to other hosts, which repeat the question to all
hosts known to them. Eventually the entire network is
canvassed.

A handful of partygoers a few meters away
have the tray. They pass back the
knowledge of its location by word of
mouth.

You get several replies, or "hits," routed back to you.

You walk over to the keepers of the tray
and partake of their sushi.

There are dozens of recipes to choose from. You double-
click on one and a request is issued to download the
recipe from the Gnutella node that has it.

page 64

Peer to Peer: Harnessing the Power of Disruptive Technologies

8.3.1.2 A client/server cocktail party

In contrast, centralized systems don't make much sense in the real world. Napster is a good example
of a client/server system, so let's look at how things would be if there were a real-life cocktail party

that mimicked Napster's system:

Cocktail party

Napster

You enter at the foyer and the host
of the party greets you. Around
him are clustered thirty-five
million of his closest friends.

You connect to Napster and upload a list of files that you are
sharing. The file list is indexed and stored in the memory of the
party host: the central server.

Your only friend at this party is the
host.

The Napster server says, "File list successfully received.”

You would like to find the tray of
sushi, so you find your way back to
the foyer and ask the host where
exactly the tray has gone.

You would like to find the recipe for strawberry rhubarb pie. So
you type "rhubarb"” into the search box, and the request is
delivered to the central server.

The host says, "Oh, yes. It's over
there."

You get several replies, or "hits," from the Napster server that
match your request.

You hold the tray and choose your
favorite sushi.

You decide which MP3 file you want to download and double-
click. A request is issued to the Napster server for the file. The

Napster server determines which file you desire and whose
computer it is on, and brokers a download for you. Soon the
download begins.

As you can see, the idea of a central authority brokering all interaction is very foreign to us. When I
look at what computer science has espoused for decades in terms of real-world interactions, I wonder
how we got so far off track. Computer science has defined a feudal system of servers and slaves, but
technologies like Gnutella are turning that around at long last.

8.3.2 Client/server means control, and control means responsibility

As it relates to Napster, the server is at once a place to plant a business model and the mail slot for a
summons. If Napster threw the switch for Napster subscriptions, they could force everyone to pay to
use their service. And if the RIAA (Recording Industry Association of America) wins its lawsuit,
Napster just might have to throw the switch the other way, stranding thirty-five million music
swappers. We'll see how that suit goes, but whether or not Napster wins in United States Federal
Court, it will still face suits in countless municipalities and overseas. It's the Internet equivalent of
tobacco: the lawsuits will follow Napster like so many cartoon rain clouds.

Gnutella, on the other hand, is largely free of these burdens. In a decentralized world, it's tough to
point fingers. No one entity is responsible for the operation of the Gnutella network. Any number of
warrants, writs, and summons can be executed, and Gnutella will still be around to help you find
recipes for strawberry rhubarb pie and "Oops, I Did It Again" MP3s.

Thomas Hale, CEO of WiredPlanet, said, "The only way to stop Gnutella is to turn off the Internet."
Well, maybe it's not the only way, but it's really hard to think of a way to eliminate every single cell of
Gnutella users, which is truly the only way to wipe Gnutella off the planet.

page 65

Peer to Peer: Harnessing the Power of Disruptive Technologies

8.3.3 The client is the server is the network

Standard network applications comprise three discrete modules. There is the server, which is where
you deposit all the intelligence - the equivalent of the television studio. There is the client, which
typically renders the result of some action on the server for viewing by the user - the equivalent of the
television. And there is the network, which is the conduit that connects the client and the server - the
equivalent of the airwaves.

Gnutella blends all that into one. The client is the server is the network. The client and server are one,
of course. That's mainly a function of simplification. There could be two processes, one to serve files
and another to download files. But it's just easier to make those two applications one; easier for users
and no more difficult for developers.

The interesting thing is that the network itself is embedded in each Gnutella node. Gnutella is an
internet built on top of the Internet, entirely in software. The Gnutella network expands as more
nodes connect to the network, and, likewise, it does not exist if no users run Gnutella nodes. This is
effectively a software-based network infrastructure that comes and goes with its users. Instead of
having specialized routers and switches and hubs that enable communication, Gnutella marries all
those things into the node itself, ensuring that the communication facilities increase with demand.
Gnutella makes the network's users the network's operators.

8.3.4 Distributed intelligence

The underlying notion that sets Gnutella apart from all other systems is that it is a system of
distributed intelligence. The queries that are issued on the network are requests for a response, any
kind of response.

Suppose you query the Gnutella network for "strawberry rhubarb pie." You expect a few results that let
you download a recipe. That's what we expect from today's Gnutella system, but it actually doesn't
capture the unique properties Gnutella offers. Remember, Gnutella is a distributed, real-time
information retrieval system wherein your query is disseminated across the network in its raw form.
That means that every node that receives your query can interpret your query however it wants and
respond however it wants, in free form. In fact, Gnutella file-sharing software does just that.

Each flavor of Gnutella software interprets the search queries differently. Some Gnutella software
looks inside the files you are sharing. Others look only at the filename. Others look at the names of the
parent directories in which the file is contained. Some Gnutella software interprets multiword queries
as conjunctions, while others look at multiword queries as disjunctions. Even the results returned by
Gnutella file-sharing software are wildly different. Some return the full path of the shared file. Others
return only the name of the file. Yet others return a short description extracted from the file.
Advertisers and spammers took advantage of this by returning URLSs to web sites completely unrelated
to the search. Creative and annoying, yet demonstrative of Gnutella's power to aggregate a collective
intelligence from distributed sources.

To prove the point once and for all that Gnutella could be used to all kinds of unimagined benefit,
Yaroslav Faybishenko, Spencer Kimball, Tracy Scott, and I developed a prototype search engine
powered by Gnutella that we called InfraSearch. The idea was that we could demonstrate Gnutella's
broad power by building a search engine that accessed data in a nontraditional way while using
nothing but pure Gnutella protocol. At the time, InfraSearch was conceived solely to give meat to what
many Gnutella insiders were unable to successfully convey to journalists interested in Gnutella: that
Gnutella reached beyond simple file swapping. To illustrate, I'll use the examples we used in our

prototype.

InfraSearch was accessed through the World Wide Web using a standard web browser. Its interface
was familiar to anyone who had used a traditional web search engine. What happened with the query
was all Gnutella. When you typed a search query into InfraSearch, however, the query was not
answered by looking in a database of keywords and HTML files. Instead, the query was broadcast on a
private Gnutella network comprising a few nodes. The nodes themselves were a hodgepodge of
variegated data sources. A short list of the notables: Online Photo Lab's image database, a calculator, a
proxy for Yahoo! Finance, and an archive of MoreOver.com's news headlines.

page 66

Peer to Peer: Harnessing the Power of Disruptive Technologies

When you typed in "MSFT" the query would be broadcast to all the nodes. Each node would evaluate
the query in relation to its knowledge base and respond only if the node had relevant information to
share. Typically, that would mean that the Yahoo! Finance node would return a result stating
Microsoft's current stock price and the MoreOver.com node would return a list of news stories
mentioning Microsoft. The results were just arbitrary snippets of HTML. The HTML fragments would
be stitched together by a Gnutella node, which also doubled as a web server, and forwarded on to the
web browser. Figure 8.1 shows the results of a search for "rose."

Figure 8.1. Results displayed from Gnutella search

= raSeanch = kdzila Build 1D 20007 205000 — |

e Edl e Bawdh 0 Bodkmaic ot e Detay A

L0000 T Q)
hilp Masaw inlvacuarch oo - m
Sl W e a3

Smecords

T Windstar Wildlife Instimue
o bl thee propesty unocceped and unheated from OctoDer feough karch
For five wesks the outside temperalure dropped into the teens al mght and
roEe inbo the 208 during the day. The lowest it got inside was 56 degress,
the average was B0, and the most it vared in 24 hours was o degress,

T strochune ..,

- Dl Do 40 772 30c8)

[K]

a1 Wiy DR WS

The real power of this paradigm showed itself when one entered an algebraic expression into the
search box, say, "1+1*3" for instance. The query would be disseminated and most nodes would realize
that they had nothing intelligent to say about such a strange question. All except the calculator node.
The calculator was a GNU bc calculator hacked to make it speak Gnutella protocol. Every time the
calculator received a query, it parsed the text to see if it was a valid algebraic expression. If it was not,
then the calculator remained silent. If the query was an algebraic expression, however, the calculator
evaluated the expression and returned the result. In this case, "1+1*3 = 4" would be the result.i

(11 Some creative users would search on ridiculously complex algebraic expressions, causing the calculator node
to become overburdened. Gnutella would then simply discard further traffic to the calculator node until it

recovered from figuring out what "987912837419847197987971234%1234183743748845765" was. The other
nodes continued on unaffected.

One potential application of this is to solve the dynamic page problem on the World Wide Web.
Instead of trying to spider those pages as web search crawlers currently do, it would be possible to
access the information databases directly and construct a response based upon data available at the
time the query was issued. Possibilities that reach even further are within sight. The query could
become structured or parameterized, making a huge body of data available through what effectively
becomes a unified query interface. The possibilities for something like that in the enterprise are
enormous. When peer-to-peer systems take off, accessing data across heterogeneous information
stores will become a problem that Gnutella has already demonstrated it can solve.

page 67

Peer to Peer: Harnessing the Power of Disruptive Technologies

What we realized is that this aggregation of intelligence maps very closely to the real world. When you
ask a question of two different people, you expect two different answers. Asking a question about cars
of a mechanic and a toy shop clerk would expectedly yield two very different answers. Yet both are
valid, and each reflects a different sort of intelligence in relation to the topic. Traditional search
technologies, however, apply only one intelligence to the body of data they search. Distributed search
technologies such as Gnutella allow the personality of each information provider and software
developer to show through undiluted.

8.3.5 Different from Freenet

Oftentimes Gnutella and Freenet are lumped together as decentralized alternatives to Napster. True,
Gnutella and Freenet are decentralized. And it's true that one can share MP3 files using either
Gnutella or Freenet. The technical similarities extend further in various ways, but the philosophical
division between Gnutella and Freenet picks up right about here.

Freenet can really be described as a bandwidth- and disk space-sharing concept with the goal of
promoting free speech. Gnutella is a searching and discovery network that promotes free
interpretation and response to queries. With Freenet, one allocates a certain amount of one's hard
drive to the task of carrying files which are in the Freenet. One shares bandwidth with others to
facilitate the transport of files to their optimal localities in the Freenet. In a sense, Freenet creates a
very large and geographically distributed hard drive with anonymous access. The network is optimized
for computerized access to those files rather than human interaction. Each file is assigned a complex
unique identification that is obscure in its interpretation. The only way to search for files is by
searching via that unique identification code.

In contrast, Gnutella is a distributed searching system with obvious applications for humans and less
obvious applications for automatons. Each Gnutella node is free to interpret the query as it wants,
allowing Gnutella nodes to give hits in the form of filenames, advertising messages, URLSs, graphics,
and other arbitrary content. There is no such flexibility in the Freenet system. The Japanese Gnutella
project, http://jnutella.org, is deploying Gnutella on i-Mode mobile phones, where the results of a
search are tailored to mobile phone interfaces. Freenet's highly regimented system of file location
based upon unique identification is about cooperative distribution of files. There is nothing wrong
with this. It's just a different approach with different effects which I'll leave to Freenet's authors to
explain.

8.4 Gnutella's communication system

With the basic understanding that Gnutella works the way real-world interpersonal communication
works, let's take a look at the concepts that make it all possible in the virtual world. Many of these
concepts are borrowed from other technologies, but their combination into one system makes for
interesting results and traffic jams.

8.4.1 Message-based, application-level routing

Traditional application-level networks are circuit-based, while Gnutella is message-based. There is no
idea of a persistent "connection," or circuit, between any two arbitrary hosts on the Gnutella network.
They are both on the network but not directly connected to each other, and not even indirectly
connected to each other in any predictable or stable fashion. Instead of forcing the determinism
provided by circuit-based routing networks, messages are relayed by a computerized bucket-brigade
which forms the Gnutella network. Each bucket is a message, and each brigadier is a host. The
messages are handed from host to host willy-nilly, giving the network a unique interconnected and
redundant topology.

8.4.2 TCP broadcast

Another unconventional approach that Gnutella uses is a broadcast communication model over
unicast TCP. Contrast this to a traditional system such as Napster, where communication is carefully
regulated to minimize traffic to its absolute lowest levels, and even then to only one or two concerned
parties. Traditional networking models are highly regimented and about as natural as formal gardens.

page 68

http://jnutella.org

Peer to Peer: Harnessing the Power of Disruptive Technologies

The broadcast mechanism is extremely interesting, because it maps very closely to our everyday lives.
Suppose you are standing at a bus stop and you ask a fellow when the next bus is to arrive: "Oi, mate!
When's the next bus?" He may not know, but someone nearby who has heard you will hopefully chime
in with the desired information. That is the strength behind Gnutella: it works like the real world.

One of the first questions I asked upon learning of Gnutella's TCP-based broadcast was, "Why not
UDP?" The simple answer is that UDP is a pain. It doesn't play nicely with most firewall
configurations and is tricky to code. Broadcasting on TCP is simple, and developers don't ask
questions about how to assess "connection" status. Let's not even start on IP multicast.

8.4.3 Message broadcasting

Combining the two concepts of message-based routing and broadcast gives us what I'll term message
broadcasting. Message broadcasting is perfect for situations where more than one network participant
can provide a valid response to a request. This same sort of thing happens all the time. Auctions, for
example, are an example of message broadcasting. The auctioneer asks for bids, and one person's bid
is just as good as another's.

Gnutella's broadcasting mechanism elegantly avoids continuous echoing. Messages are assigned
unique identifiers (128-bit unique identifiers, or UUIDs, as specified by Leach and Salz's 1997 UUIDs
and GUIDs Informational Draft to the IETF). With millions of Gnutella nodes running around, it is
probably worth answering the question, "How unique is a UUID?" Leach and Salz assert uniqueness
until 3400 A.D. using their algorithm. Anyway, it's close enough that even if there were one or two
duplicated UUIDs along the way nobody would notice.

Every time a message is delivered or originated, the UUID of the message is memorized by the host it
passes through. If there are loops in the network then it is possible that a host could receive the same
message twice. Normally, the host would be obligated to rebroadcast the message just like any other
that it received. However, if the same message is received again at a later time (it will have the same
UUID), it is not retransmitted. This explicitly prevents wasting network resources by sending a query
to hosts that have already seen it.

Another interesting idea Gnutella implements is the idea of decay. Each message has with it a TTL:
number, or time-to-live. Typically, a query starts life with a TTL of 7. When it passes from host to host,
the TTL is decremented. When the TTL reaches o, the request has lived long enough and is not
retransmitted again. The effect of this is to make a Gnutella request fan out from its originating source
like ripples on a pond. Eventually the ripples die out.

(2] TTL is not unique to Gnutella. It is present in IP, where it is used in a similar manner.
8.4.4 Dynamic routing

Message broadcasting is useful for the query, but for the response, it makes more sense to route rather
than to broadcast. Gnutella's broadcast mechanism allows a query to reach a large number of potential
respondents. Along the way, the UUIDs that identify a message are memorized by the hosts it passes
through. When Host A responds to a query, it looks in its memory and determines which host sent the
query (Host B). It then responds with a reply message containing the same UUID as the request
message. Host B receives the reply and looks in its memory to see which host sent the original request
(Host C). And on down the line until we reach Host X, which remembers that it actually originated the
query. The buck stops there, and Host X does something intelligent with the reply, like display it on
the screen for the user to click on (see Figure 8.2).

The idea to create an ephemeral route as the result of a broadcast for discovery is not necessarily
novel, but it is interesting. Remember, a message is identified only by its UUID. It is not associated
with its originator's IP address or anything of the sort, so without the UUID-based routes, there is no
way for a reply to be delivered to the node that made the request.

This sort of dynamic routing is among the things that make Gnutella the intriguing technology that it
is. Without it, there would need to be some kind of fixed Gnutella infrastructure. With dynamic
routing, the infrastructure comes along with the nodes that join the network, in real time. A node
brings with it some network capacity, which is instantly integrated into the routing fabric of the
network at large.

page 69

Peer to Peer: Harnessing the Power of Disruptive Technologies

Figure 8.2. Results displayed from a Gnutella query

G gnutella v0.56 i e e |
griuballah et pirie]
Uphaads ! v Q
gmnhbads B42 tem(s| found. . Iirimum connechon spesd |kbps| |0
Al
Harite File | size | Speed ﬂ
Lonfig Pk Flopd] - Wish You Were Here g 4411245 512
[Pk, Flopd) 048 %azh Vo wiere Here, mp3 4240265 512
Conneclions [Fnk Flopd) Dank Side of the Moon.mpd 3689035 512
0 oriatia | (Prk Floyd) Morey.mp3 EITIFE 350
i Fink-foyd-(w1SH-YOUWERE-HEREF03-Have . 4327448 512
[[Prk_Flowd FO7_Jugband_Bhees.mpd 2853802 1000
{Prik_Flayd}1970_Boctieg_Track(3.mp3 3695529 10000
{Fink_FhapdLThe Division Belld Gresl Day F. 4122453 E4D
[Pk _FlaydHThe_Drasion_Belll-Cluster_Onempd 5734110 G40
[Pk _Floyd}{The_Drazion_Belll-Coming_Back_... 6070335 B40
{Pik_FloydHThe_Divisicn,_BeillHigh Hogssmpd 8197561 E40
[Fink_Flayd HThe_Division_Belll¥eep_Talkingm. 5936074 G40
[Pk _FloydH The_Drazion_BellLost_For_Words . 503594671 G40
[Pk _FlapdH The_Drazion_B el Manooned mp3 527390 B40
grutelabet skatz: [Pink_FlaydHThe_E aily_Singlesapples_and O, 3010270 E40
[Fok_FlowdHThe_Eaily_Singles]fmold_Lapre . 28338531 5400
EE?A‘ [Pnlk_Flopd}{ The_Early_Singles]-Candy_and_a_... 2678223 640
s i . -
w0 M :Pink_Fh_l.-d]-[lhe_EalI_l.l_E.mgles] Caraful \ith_T... 5515093 Ed-:] i __]
Updale | Download seleched fies | Stream selected fies |

When a node leaves the network, it does not leave the network at large in shambles, as is typical for
the Internet. The nodes connected to the departing node simply clean up their memories to forget the
departed node, and things continue without so much as a hiccup. Over time, the network adapts its
shape to long-lived nodes, but even if the longest-lived, highest-capacity node were to disappear, there
would be no lasting adverse effects.

8.4.5 Lossy transmission over reliable TCP

A further unconventional notion that is core to Gnutella's communication mechanisms is that the TCP
connections that underlie the Gnutella network are not to be viewed as the totally reliable transports
they are typically seen as. With Gnutella, when traffic rises beyond the capacity that a particular
connection can cope with, the excess traffic is simply forgotten. It is not carefully buffered and
preserved for future transmission as is typically done. Traffic isn't coddled on Gnutella. It's treated as
the network baggage that it is.

The notion of using a reliable transport to unreliably deliver data is notable. In this case, it helps to
preserve the near-real-time nature of the Gnutella network by preventing an overlong traffic backlog.
It also creates an interesting problem wherein low-speed Gnutella nodes are at a significant
disadvantage when they connect to high-speed Gnutella nodes. When that happens, it's like drinking
from a fire hose, and much of the data is lost before it is delivered.

On the positive side, loss rates provide a simple metric for relative capacity. If the loss rate is
consistently high, then it's a clear signal to find a different hose to drink from.

8.5 Organizing Gnutella

One of the ways Gnutella software copes with const